General Lab Information

photo of accelerator magnets

Publications

  1. Yang, X. (2024). High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser. Instruments, 8(2), 35 https://dx.doi.org/10.3390/instruments8020035
  2. Yang, X. (2024). Optimize Electron Beam Energy toward In Situ Imaging of Thick Frozen Bio-Samples with Nanometer Resolution Using MeV-STEM. Nanomaterials, 14(9), 803 https://dx.doi.org/10.3390/nano14090803
  3. Yang, X. & Wang, L. (2024). Towards Construction of a Novel Nanometer-Resolution MeV-STEM for Imaging Thick Frozen Biological Samples. Photonics, 11(3), 252 https://dx.doi.org/10.3390/photonics11030252
  4. Aniculaesei, C. & Tiwari, G. (2024). The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator. Matter and Radiation at Extremes, 9(1) https://dx.doi.org/10.1063/5.0161687
  5. Banerjee, A. & Musardo, M. (2024). Field Harmonic Measurement of High-Gradient Permanent Magnet Quadrupoles for NSLS- II Upgrade. IEEE Transactions on Applied Superconductivity, 34(5), 1-4 https://dx.doi.org/10.1109/tasc.2024.3351099
  6. Tanabe, T. (2023). Development of the high energy engineering X-ray (HEX) superconducting wiggler, magnetic measurement, installation, and commissioning. Review of Scientific Instruments, 94(6) https://dx.doi.org/10.1063/5.0146964
  7. Tanabe, T. (2022). Construction of Cryogen-Free 4.3T Superconducting Wiggler for NSLS-II Ring. IEEE Xplore, 32(6) https://dx.doi.org/10.1109/TASC.2022.3173248
  8. Li, Y. (2022). Designing linear lattices for round beam in electron storage rings using the solution by linear matrices analysis. Physical Review Accelerators and Beams, 55(10), 8-14 https://dx.doi.org/10.1103/PhysRevAccelBeams.25.040702
  9. Smaluk, V. (2022). Improvement of the AC orbit bump method of local kick factor measurement using reference bunches. Science Direct, 1029(166417) https://dx.doi.org/10.1016/j.nima.2022.166417
  10. Li, Y. (2022). Data-driven chaos indicator for nonlinear dynamics and applications on storage ring lattice design. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1024, Article 166060 https://dx.doi.org/10.1016/j.nima.2021.166060
  11. Li, Y. (2021). Design of double-bend and multibend achromat lattices with large dynamic aperture and approximate invariants. Physical Review Accelerators and Beams, 24, Article 124001 https://dx.doi.org/10.1103/PhysRevAccelBeams.24.124001
  12. Plassard, F. & Wang, G. (2021). Simultaneous correction of high order geometrical driving terms with octupoles in synchrotron light sources. Physical Review Accelerators and Beams, 24(11), Article 114801 https://dx.doi.org/10.1103/PhysRevAccelBeams.24.114801
  13. Kongtawong, S. & Tian, Y. (2021). Recent improvements in beam orbit feedback at NSLS-II. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 976, Article 164250 https://dx.doi.org/10.1016/j.nima.2020.164250
  14. Shaftan, T. (2021). Cold ion beam in a storage ring as a platform for large-scale quantum computers and simulators: Challenges and directions for research and development. Physical Review Accelerators and Beams, 24, Article 094701 https://dx.doi.org/10.1103/PhysRevAccelBeams.24.094701
  15. Hidas, D. (2021). Emittance and energy spread compensation for current and future low emittance synchrotron light sources. Physical Review Accelerators and Beams, 24(8), Article 81601 https://dx.doi.org/10.1103/PhysRevAccelBeams.24.081601
  16. Zhang, Z. & Zhu, Y. (2021). Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning. Scientific Reports, 11(1), Article 13890 https://dx.doi.org/10.1038/s41598-021-93341-2
  17. Smaluk, V. & Bassi, G. (2021). Combined effect of chromaticity and feedback on transverse head-tail instability. Physical Review Accelerators and Beams, 24(5), Article 54401 https://dx.doi.org/10.1103/PhysRevAccelBeams.24.054401
  18. Wang, G. (2021). Lossless Crossing of 1/2 Resonance Stopband by Synchrotron Oscillations. JACoW https://dx.doi.org/10.18429/JACoW-IPAC2019-MOPGW125
  19. Yang, X. (2021). Visualizing lattice dynamic behavior by acquiring a single time-resolved MeV diffraction image. Journal Of Applied Physics, 129(5), Article 054901 https://dx.doi.org/10.1063/5.0036619
  20. Pogorelsky, I. & Shaftan, T. (2020). Converting conventional electron accelerators to high peak brilliance Compton light sources. Physical Review Accelerators and Beams, 23(12), Article 120702 https://dx.doi.org/10.1103/PhysRevAccelBeams.23.120702
  21. Smaluk, V. (2020). Realizing low-emittance lattice solutions with Complex Bends. Journal Of Physics: Conference Series, 1350 https://dx.doi.org/10.1088/1742-6596/1350/1/012044
  22. Yang, X. (2020). Toward monochromated sub-nanometer UEM and femtosecond UED. Scientific Reports, 10(1), Article 16171 https://dx.doi.org/10.1038/s41598-020-73168-z
  23. He, A. (2020). Parallel performance of "Synchrotron Radiation Workshop" code: partially coherent calculations for storage rings and time-dependent calculations for XFELs. Advances in Computational Methods for X-Ray Optics V , 11493 https://dx.doi.org/10.1117/12.2567448
  24. Blednykh, A. (2020). Beam impedance and heating analysis of the diagnostic stripline. Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 963, Article 163729 https://dx.doi.org/10.1016/j.nima.2020.163729
  25. Musardo, M. (2020). Magnetic Field Optimization of an In-Vacuum Undulator at NSLS-II. IEEE Transactions on Applied Superconductivity, 30(4), Article 4100404 https://dx.doi.org/10.1109/TASC.2020.2965477
  26. Andrews, L. & Bernstein, H. (2020). Converting three-space matrices to equivalent six-space matrices for Delone scalars in S6. Acta Crystallographica Section A, A76, 79-83 https://dx.doi.org/10.1107/S2053273319014542
  27. Ma, H. (2019). Nsls-Ii Inject Linac Rf Control Electronics Upgrade. Proceedings of NAPAC2019 https://www.osti.gov/biblio/1725761
  28. Ma, H. (2019). Upgrade and Operation Experience Of Solid-State Switching Klystron Modulator In Nsls-Ii Linac. Proceedings of NAPAC 2019 https://www.osti.gov/biblio/1725762
  29. Yang, X. (2019). A novel nondestructive diagnostic method for mega-electron-volt ultrafast electron diffraction. Scientific Reports, 9, Article 17223 https://dx.doi.org/10.1038/s41598-019-53824-9
  30. Wang, G. (2019). Complex bend. II. A new optics solution. Physical Review Accelerators and Beams, 22(11), Article 110703 https://dx.doi.org/10.1103/PhysRevAccelBeams.22.110703
  31. Cheng, W. & Li, Y. (2019). Measurement and analysis of fast transient instabilities. Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 944, Article 162566 https://dx.doi.org/10.1016/j.nima.2019.162566
  32. Bassi, G. (2019). Longitudinal beam dynamics with a higher-harmonic cavity for bunch lengthening. International Journal of Modern Physics A, 34, Article 1942040 https://dx.doi.org/10.1142/S0217751X19420405
  33. Wang, G. (2019). Reaching low emittance in synchrotron light sources by using complex bends. https://dx.doi.org/10.18429/JACoW-NAPAC2019-TUZBB2
  34. Choi, J. & Hidaka, Y. (2019). Study of the Beam Current Effects on the NSLS-II Storage Ring Optics Using Turn-by-Turn Data. JACoW, 375-378 https://dx.doi.org/10.18429/JACoW-IPAC2019-MOPGW110
  35. Yang, X. (2019). Tuning Quadrupoles For Brighter and Sharper Ultra-Fast Electron Diffraction Imaging. JACoW Publishing https://dx.doi.org/10.18429/JACoW-IPAC2019-THPMP053
  36. Yang, X. (2019). INTERFEROMETRIC MEASUREMENT OF BUNCH LENGTH OF A 3 MeV PICOCOULOMB ELECTRON BEAM. JACoW Publishing https://dx.doi.org/10.18429/JACoW-IPAC2019-WEPGW114
  37. Hidaka, Y. (2019). Improvements in Long-Term Orbit Stability at NSLS-II. JACoW Publishing https://dx.doi.org/10.18429/JACoW-IPAC2019-THPRB104
  38. Li, Y. (2019). A Cross-Cell Interleaved Nonlinear Lattice for Potential NSLS-II Upgrade. Journal of Physics: Conference Series, 1350, Article 1 https://dx.doi.org/10.1088/1742-6596/1350/1/012119
  39. Yang, X. (2019). A compact tunable quadrupole lens for brighter and sharper ultra-fast electron diffraction imaging. Scientific Reports, 9, Article 5115 https://dx.doi.org/10.1038/s41598-019-39208-z
  40. Li, Y. (2019). Bayesian Approach for Linear Optics Correction. Physical Review Accelerators, 22 https://dx.doi.org/10.1103/PhysRevAccelBeams.22.012804
  41. Fliller III, R. (2019). Re-Evaluation Of the Nsls-Ii Active Interlock Window. JACoW Publishing https://dx.doi.org/10.18429/JACoW-NAPAC2019-TUPLS04
  42. Hidas, D. (2018). Novel, Fast, Open-Source Code for Synchrotron Radiation Comutation on Arbitrary 3D Geometries. Jacow https://dx.doi.org/10.18429/JACoW-ICAP2018-TUPAG21
  43. Cheng, W. (2018). Beam position monitor gate functionality implementation and applications. Methods X, 626-634 https://dx.doi.org/10.1016/j.mex.2018.06.006
  44. Smaluk, V. (2018). Impedance computations and beam-based measurements: A problem of discrepancy. Nuclear Instruments and Methods in Physics Research Section A, 888, 22-30 https://dx.doi.org/10.1016/j.nima.2018.01.047
  45. Li, Y. (2017). Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train. Physical Review Accelerators and Beams https://dx.doi.org/10.1103/physrevaccelbeams.20.112802
  46. Yang, X. (2016). A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment https://dx.doi.org/10.1016/j.nima.2016.05.020
  47. Hseuh, H. (2016). National Synchrotron Light Source II Storage Ring Vacuum Systems. Journal of Vacuum Science & Technology A (JVSTA) https://dx.doi.org/10.1116/1.4945406
  48. Bassi, G. (2015). Analysis of coupled-bunch instabilities for the NSLS-II storage ring with a 500 MHz 7-cell PETRA-III cavity. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment https://dx.doi.org/10.1016/j.nima.2015.11.151
  49. Tanabe, T. (2015). Insertion Devices at the National Synchrotron Light Source-II*. Synchrotron Radiation News https://dx.doi.org/10.1080/08940886.2015.1037682
  50. Ahmed, A. & Benmerrouche, M. (2015). Monte Carlo Simulation Study to Calculate Radiation dose under beam-loss scenarios in Top-up operation mode for HXMA beamline at Canadian Light Source. Radiation Measurements https://dx.doi.org/10.1016/j.radmeas.2015.01.009