General Lab Information

Experiment Development Program

Publications

  1. Goel, H., Chubar, O., Li, R., Wiegart, L., Rakitin, M., & Fluerasu, A. (2024). Efficient end-to-end simulation of time-dependent coherent X-ray scattering experiments. Journal of Synchrotron Radiation, 31(3), 517-526 https://dx.doi.org/10.1107/s1600577524001267
  2. Labat, M., Chubar, O., Breunlin, J., Hubert, N., & Andersson, Å. (2023). Bending Magnet Synchrotron Radiation Imaging with Large Orbital Collection Angles. Physical Review Letters, 131(18), Article 185001 https://dx.doi.org/10.1103/physrevlett.131.185001
  3. Chubar, O. (2023). Applications of "Synchrotron Radiation Workshop" Code. Synchrotron Radiation News, 36(5), 15-22 https://dx.doi.org/10.1080/08940886.2023.2274739
  4. Xu, W., Xu, W., Bouet, N., Zhou, J., Yan, H., Huang, X., Huang, L., Lu, M., Zalalutdinov, M., Chu, Y. S., & Nazaretski, E. (2023). Machine-learning-based automatic small-angle measurement between planar surfaces in interferometer images: A 2D multilayer Laue lenses case. Optics and Lasers in Engineering, 161, 107331 https://dx.doi.org/10.1016/j.optlaseng.2022.107331
  5. Chubar, O., Williams, G., Gao, Y., Li, R., & Berman, L. (2022). Physical optics simulations for synchrotron radiation sources. Journal of the Optical Society of America A, 39(12), C240 https://dx.doi.org/10.1364/josaa.473367
  6. Xu, W., Xu, W., Bouet, N., Zhou, J., Yan, H., Huang, X., Lu, M., Zalalutdinov, M., Chu, Y. S., & Nazaretski, E. (2022). Achieving High-Resolution Hard X-ray Microscopy using Monolithic 2D Multilayer Laue Lenses. Microscopy Today, 30(6), 28-33 https://dx.doi.org/10.1017/s1551929522001274
  7. Nazaretski, E. (2022). A New Kirpatrick Baez Based Scanning Microscope for Submicron Resolution X-Ray Spectroscopy (SRX) Beamline at NSLS II. Journal Of Synchrotron Radiation https://dx.doi.org/10.1107/S1600577522007056
  8. Li, R., & Chubar, O (2022). Memory and CPU efficient coherent mode decomposition of partially coherent synchrotron radiation with subtraction of common quadratic phase terms. Optics Express, 4, 5896-5915 https://dx.doi.org/10.1364/OE.452247
  9. Nazaretski, E., Xu, W., Yan, H., Huang, X., Xu, W., Bouet, N., Zhou, J., Coburn, D. S., Huang, L., Yang, Y., Kiss, A. M., Idir, M., & Chu, Y. S. S. (2021). Recent advances in nano-scale spatial resolution x-ray microscopy instrumentation at NSLS-II. Proceedings Volume 11839, X-Ray Nanoimaging: Instruments and Methods V https://dx.doi.org/10.1117/12.2595045
  10. Huang, X., Nazaretski, E., Xu, W., Hidas, D., Cordier, M., Stripe, B., Yun, W., & Chu, Y. S. (2020). Metrology of a focusing capillary using optical ptychography. Sensors, 20(22) https://dx.doi.org/10.3390/s20226462
  11. Xu, W., Xu, W., Bouet, N., Zhou, J., Yan, H., Huang, X., Lu, M., Zalalutdinov, M., Chu, Y., & Nazaretski, E. (2020). Micromachined Silicon Platform for Precise Assembly of 2D Multilayer Laue Lenses for High-Resolution X-ray Microscopy. Micromachines, 11(10), Article 939 https://dx.doi.org/10.3390/mi11100939
  12. Xu, W., Xu, W., Bouet, N., Zhou, J., Yan, H., Huang, X., Pattammattel, A., Gao, Y., Lu, M., Zalalutdinov, M., Chu, Y. S., & Nazaretski, E. (2020). 2D MEMS-based multilayer Laue lens nanofocusing optics for high-resolution hard x-ray microscopy. Optics Express, 28(12), 17660-17671 https://dx.doi.org/10.1364/OE.389555
  13. Nazaretski, E., Xu, W., Yan, H., Huang, X., Xu, W., Bouet, N., Zhou, J., Coburn, D. S., Lee, W., Ge, M., Huang, L., Idir, M., & Chu, Y. S. (2020). X-ray microscopy instrumentation developments at NSLS-II: recent progress and future directions. X-Ray Nanoimaging: Instruments and Methods Iv, 11112, Article 111120M https://dx.doi.org/10.1117/12.2528166
  14. Xu, W., Xu, W., Bouet, N., Zhou, J., Yan, H., Huang, X., Lu, M., Chu, Y. S., & Nazaretski, E. (2020). Focusing of hard X-rays with monolithic two-dimensional multilayer Laue lenses: technical challenges and current status. X-Ray Nanoimaging: Instruments and Methods Iv, 11112, Article 1111200 https://dx.doi.org/10.1117/12.2527510
  15. Yan, H., Shirato, N., Zhu, X., Rosenmann, D., Tong, X., Xu, W., Petrovic, C., Rose, V., & Nazaretski, E. (2019). X-ray Assisted Scanning Tunneling Microscopy and Its Applications for Materials Science: The First Results on Cu Doped ZrTe3. Crystals https://dx.doi.org/10.3390/cryst9110588
  16. Coburn, D. S., Nazaretski, E., Xu, W., Ge, M., Longo, C., Xu, H., Gofron, K., Yin, Z., Chen, H. H., Hwu, Y., & Lee, W. (2019). Design, characterization and performance of a hard X-ray transmission microscope at the National Synchrotron Light Source II 18-ID beamline. Review of Scientific Instruments, 90 https://dx.doi.org/10.1063/1.5088124
  17. Yan, H., Bouet, N., Zhou, J., Huang, X., Nazaretski, E., Xu, W., Cocco, A. P., Chiu, W. K. S., Brinkman, K. S., & Chu, Y. S. (2019). Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science. Nano Futures, 2(1), Article UNSP 011001 https://dx.doi.org/10.1088/2399-1984/aab25d
  18. Bouet, N., Macrander, A. T., Maser, J., Chu, Y. S., Zhou, J., Nazaretski, E., Yan, H., Huang, X., & Conley, R. (2019). Large Aperture and Wedged Multilayer Laue Lens for X-ray Nanofocusing. Journal Of Nanoscience and Nanotechnology, 19(1), 575-584 https://dx.doi.org/10.1166/jnn.2019.16479
  19. Rakitin, M. S., Moeller, P., Nagler, R., Nash, B., Bruhwiler, D. L., Smalyuk, D., Zhernenkov, M., & Chubar, O. (2018). Sirepo: an open-source cloud-based software interface for X-ray source and optics simulations. Journal Of Synchrotron Radiation, 25, 1877-1892 https://dx.doi.org/10.1107/S1600577518010986
  20. Blednykh, A., Bacha, B., Bassi, G., Cheng, W., Chubar, O., Derbenev, A., Lindberg, R., Rakitin, M., Smaluk, V., Zhernenkov, M., Chen-Wiegart, Y. K., & Wiegart, L. (2018). New aspects of longitudinal instabilities in electron storage rings. Scientific Reports, 8, Article 11918 https://dx.doi.org/10.1038/s41598-018-30306-y
  21. Bajt, S. & Huang, X. (2018). X-ray focusing with efficient high-NA multilayer Laue lenses. Light-Science & Applications, 7, Article 17162 https://dx.doi.org/10.1038/lsa.2017.162
  22. Xu, W., Schlossberger, N., Xu, W., Yan, H., Huang, X., Chu, Y. S., & Nazaretski, E. (2017). High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope. Measurement Science and Technology https://dx.doi.org/10.1088/1361-6501/aa8916
  23. Yan, H., Huang, X., Bouet, N., Zhou, J., Nazaretski, E., & Chu, Y. S. (2017). Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges. Optics Express https://dx.doi.org/10.1364/OE.25.025234
  24. Nazaretski, E. (2017). Design and performance of an x-ray scanning microscope at the hard x-ray nanoprobe beamline of the NSLS-II. Journal of Synchrotron Radiation https://www.osti.gov/biblio/1413930
  25. Xue, J., Huang, L., Gao, B., Kaznatcheev, K., & Idir, M. (2017). One-dimensional stitching interferometry assisted by a triple-beam interferometer. Optics Express https://dx.doi.org/10.1364/OE.25.009393
  26. Chubar, O. (2017). Analysis and Correction Of In-Vacuum Undulator Misalignment Effects In A Storage Ring Synchrotron Radiation Source*. Jacow https://dx.doi.org/10.18429/JACoW-IPAC2017-TUPAB140
  27. Huang, X., Xu, W., Nazaretski, E., Bouet, N., Zhou, J., Chu, Y. S., & Yan, H (2017). Hard x-ray scanning imaging achieved with bonded multilayer Laue lenses. Optics Express https://dx.doi.org/10.1364/OE.25.008698
  28. Huang, L. (2017). Model mismatch analysis and compensation for modal phase measuring deflectometry. Optics Express https://dx.doi.org/10.1364/OE.25.000881
  29. Huang, L., Xue, J., Gao, B., Zuo, C., & Idir, M. (2016). Spline based least squares integration for two-dimensional shape or wavefront reconstruction. Optics and Lasers in Engineering https://dx.doi.org/10.1016/j.optlaseng.2016.12.004
  30. Huang, L., Xue, J., & Idir, M. (2016). Controlling X-ray deformable mirrors during inspection. Journal Synchrotron Radiation https://dx.doi.org/10.1107/S1600577516014600
  31. Huang, L., Xue, J., Gao, B., McPherson, C., Beverage, J., & Idir, M. (2016). Modal phase measuring deflectometry. Optics Express https://dx.doi.org/10.1364/OE.24.024649
  32. Zhou, L., Huang, L., Bouet, N., Kaznatcheev, K., Vescovi, M., Dai, Y., Li, S., & Idir, M. (2016). New figuring model based on surface slope profile for grazing incidence reflective optics. Journal of Synchrotron Radiation https://dx.doi.org/10.1107/s1600577516010882
  33. Nazaretski, E., Xu, W., Bouet, N., Zhou, J., Yan, H., Huang, X., & Chu, Y. S. (2016). Development and characterization of monolithic multilayer Laue lens nanofocusing optics. Applied Physics Letters https://dx.doi.org/10.1063/1.4955022
  34. Wiegart, L., Fluerasu, A., Bruhwiler, D., & Chubar, O. (2016). Partially Coherent Wavefront Propagation Simulations: Mirror and Monochromator Crystal Quality Assessment. AIP Conference Proceedings https://dx.doi.org/10.1063/1.4952885
  35. Chubar, O. (2016). Initial performances of first undulator-based hard x-ray beamlines of NSLS-II compared to simulations. https://dx.doi.org/10.1063/1.4952874
  36. Chubar, O. (2016). Magnet System Optimization for Segmented Adaptive-Gap In-Vacuum Undulator. AIP Conference Proceedings https://dx.doi.org/10.1063/1.4952797
  37. Chubar, O. (2016). Initial Performances of First Undulator-Based Hard X-Ray Beamlines of NSLS-II Compared to Simulations. AIP Conference Proceedings https://dx.doi.org/10.1063/1.4952874
  38. Franco, J. M., Cywiak, M., Cywiak, D., & Mourad, I. (2016). Optimal focusing conditions of lenses using Gaussian beams. Optics Communications https://dx.doi.org/10.1016/j.optcom.2016.03.084
  39. Sanchez, M., Bianchi, D., Cocco, D., Glass, M., Mourad, I., Metz, J., Raimondi, L., Luca Rebuffi, Reininger, R., Shi, X., Siewert, F., Sibylle Spielmann-Jaeggi, Takacs, P., Tomasset, M., Tonnessen, T., Vivo, A., & Valeriy Yashchuk. (2016). DABAM: An Open-Source Database of X-ray Mirrors Metrology. Journal of Synchrotron Radiation https://www.osti.gov/biblio/1340359
  40. Chubar, O. (2016). Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers. Journal of Synchrotron Radiation, 23(2), 410-424 https://dx.doi.org/10.1107/s1600577515024844
  41. Yan, H. & Yan, H. (2016). Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution. Scientific Reports https://dx.doi.org/10.1038/srep20112
  42. Suvorov, A. (2015). Ultrahigh energy resolution focusing monochromator for inelastic x-ray scattering spectrometer. Optics Express, 23(24), 31607 https://dx.doi.org/10.1364/oe.23.031607
  43. Kubec, A. & Bouet, N. (2015). Diffraction properties of multilayer Laue lenses with an aperture of 102 ?m and WSi2/Al bilayers. Optics Express https://dx.doi.org/10.1364/OE.23.027990
  44. Idir, M. (2015). A one-dimensional ion beam figuring system for x-ray mirror fabrication. Review of Scientific Instruments, 86(10) https://dx.doi.org/10.1063/1.4934806
  45. Dimitrov, I. & Zhang, X. (2015). Rapid and Semi-analytical Design and Simulation of a Toroidal Magnet Made With YBCO and MgB2 Superconductors. IEEE Transactions on Applied Superconductivity https://dx.doi.org/10.1109/TASC.2015.2448455
  46. Macrander, A. & Bouet, N. (2015). Efficiency of a Multilayer-Laue-Lens with a 102 micron Aperture. Applied Physics Letters https://dx.doi.org/10.1063/1.4929505
  47. Huang, X. & Yan, H. (2015). Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens. Optics Express https://dx.doi.org/10.1364/OE.23.012496
  48. Huang, L. & Huang, L. (2015). Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms. Optics Letters https://dx.doi.org/10.1364/OL.40.001976
  49. Xu, W. & Xu, W. (2015). Performance and characterization of a MEMS-based device for alignment and manipulation of x-ray nanofocusing optics. AIP Advances https://dx.doi.org/10.1063/1.4916677
  50. Huang, X. & Huang, X. (2015). Fly-scan ptychography. Scientific Reports https://dx.doi.org/10.1038/srep09074
  51. Nazaretski, E. & Nazaretski, E. (2015). Pushing the limits: an instrument for hard x-ray imaging below 20 nm. Journal of Synchrotron Radiation https://dx.doi.org/10.1107/S1600577514025715
  52. Kim, J. & Nazaretski, E. (2015). Two-band effect on the vortex dynamics and critical current density in an anisotropic clean MgB2 thin film. Solid State Communications, 204, 56-60 https://dx.doi.org/10.1016/j.ssc.2014.11.015
  53. Huang, L. (2015). Comparison of two-dimensional integration methods for shape reconstruction from gradient data. Optics and Lasers in Engineering, 64, 1-11 https://dx.doi.org/10.1016/j.optlaseng.2014.07.002
  54. Roling, S. & Chubar, O. (2014). Time dependent wavefront propagation simulation of a hard x-ray split-and-delay unit - Towards a measurement of the temporal coherence properties of the European XFEL. Physical Review Accelerators and Beams https://dx.doi.org/10.1103/PhysRevSTAB.17.110705
  55. Xu, W. & Xu, W. (2014). A High Precision Instrument for Mapping of Rotational Errors in Rotary Stages. Journal of Synchrotron Radiation https://dx.doi.org/10.1107/S160057751401618X
  56. Hoennicke, M. & Bouet, N. (2014). Exotic X-ray back-diffraction: a path toward a soft inelastic X-ray scattering spectrometer. Journal of Applied Crystallography https://dx.doi.org/10.1107/S1600576714018147
  57. Chubar, O. (2014). Recent updates in the "Synchrotron Radiation Workshop" code, on-going developments, simulation activities, and plans for the future. Advances in Computational Methods for X-Ray Optics https://dx.doi.org/10.1117/12.2062100
  58. Bruhwiler, D. & Chubar, O. (2014). An open software framework for advancement of X-ray optics simulation and modeling. Advances in Computational Methods for X-Ray Optics https://dx.doi.org/10.1117/12.2061947
  59. Zhernenkov, M. (2014). Soft Matter Interfaces beamline at NSLS-II: geometrical ray-tracing vs. wavefront propagation simulations. Proceedings Volume 9209, Advances in Computational Methods for X-Ray Optics III https://dx.doi.org/10.1117/12.2060889
  60. Canestrari, N. & Bisogni, V. (2014). Wavefront propagation simulations for a UV / soft X-ray beamline: Electron Spectro-Microscopy beamline at NSLS-II. Proceedings Volume 9209, Advances in Computational Methods for X-Ray Optics III https://dx.doi.org/10.1117/12.2061979
  61. He, A. & Chubar, O. (2014). Separation of Hard X-Ray Synchrotron Radiation from Electron Beam Slices. Proceedings Volume 9209, Advances in Computational Methods for X-Ray Optics https://dx.doi.org/10.1117/12.2061255
  62. Suvorov, A. & Chubar, O. (2014). Partially-coherent wavefront propagation simulations for inelastic X-ray scattering beamline including crystal optics. Proceedings Volume 9209, Advances in Computational Methods for X-Ray Optics https://dx.doi.org/10.1117/12.2061987
  63. Chubar, O. (2014). Perfect crystal propagator for physical optics simulations with Synchrotron Radiation Workshop. Advances in Computational Methods for X-Ray Optics III https://dx.doi.org/10.1117/12.2061646
  64. Sanchez del Rio, M. & Chubar, O. (2014). A proposal for an Open Source graphical environment for simulating X-ray optics. Proceedings Volume 9209, Advances in Computational Methods for X-Ray Optics III https://dx.doi.org/10.1117/12.2061834
  65. Yan, H. & Yan, H. (2014). Hard x-ray nanofocusing by multilayer Laue lenses. Journal of Physics D: Applied Physics https://dx.doi.org/10.1088/0022-3727/47/26/263001
  66. Canestrari, N. & Chubar, O. (2014). Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics. Journal of Synchrotron Radiation https://dx.doi.org/10.1107/S1600577514013058
  67. Gofron, K. & Gofron, K. (2014). Piezo control for 1 nm spatial resolution synchrotron X-ray microscopy. Journal of Physics: Conference Series https://dx.doi.org/10.1088/1742-6596/493/1/012026
  68. Nazaretski, E. & Nazaretski, E. (2014). Design and performance of a scanning ptychography microscope. Review of Scientific Instruments https://dx.doi.org/10.1063/1.4868968
  69. Xu, W. & Xu, W. (2014). Measurements of thermal conductivity of La0.95Sr0.05CoO3 nanofibers using MEMS devices. Reliability, Packaging, Testing, and Characterization of MOEMS/MEMS, Nanodevices, and Nanomaterials https://dx.doi.org/10.1117/12.2054464
  70. Idir, M. (2014). A 2 D high accuracy slope measuring system based on a Stitching Shack Hartmann Optical Head. Optics Express https://dx.doi.org/10.1364/OE.22.002770
  71. Fuchs, M. (2014). NSLS-II Biomedical Beamlines for Macromolecular Crystallography, FMX and AMX, and for X-ray Scattering, LIX: Current Developments. Journal of Physics: Conference Series https://dx.doi.org/10.1063/1.4952829
  72. Huang, X. & Huang, X. (2013). 11 nm hard X-ray focus from a large-aperture multilayer Laue lens. Scientific Reports https://dx.doi.org/10.1038/srep03562
  73. Chubar, O. (2013). Wavefront Propagation Simulations for Beamlines and Experiments with Synchrotron Radiation Workshop. Journal of Physics: Conference Series https://dx.doi.org/10.1088/1742-6596/425/16/162001
  74. Shu, D. & Nazaretski, E. (2013). Optomechanical Design of a Multilayer Laue Lens Test Bed for 10-nm Focusing of Hard X-rays. Journal of Physics: Conference Series, 463, 012029 https://dx.doi.org/10.1088/1742-6596/463/1/012029
  75. Murokh, A. & Chubar, O. (2013). Textured dysprosium and gadolinium poles for high-field, short-period hybrid undulators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment https://dx.doi.org/10.1016/j.nima.2013.10.020
  76. Potier, J. & Idir, M. (2013). Experimental comparison of full and partial coherent illumination in coherent diffraction imaging reconstructions. Journal of Physics: Conference Series https://dx.doi.org/10.1088/1742-6596/425/19/192009
  77. Rizzi, J. & Idir, M. (2013). X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer. Optics Express https://dx.doi.org/10.1364/OE.21.017340
  78. Chubar, O. (2013). Experimental characterization of X-ray transverse coherence in the presence of beam transport optics. Journal of Physics: Conference Series https://dx.doi.org/10.1088/1742-6596/425/5/052028
  79. Kang, H. & Yan, H. (2013). Oxidation of PtNi nanoparticles studied by a scanning X-ray fluorescence microscope with multi-layer Laue lenses. Nanoscale https://dx.doi.org/10.1039/C3NR00396E
  80. Kim, J. & Nazaretski, E. (2013). Compact prototype apparatus for reducing the circle of confusion down to 40 nm for x-ray nanotomography. Review of Scientific Instruments https://dx.doi.org/10.1063/1.4798546
  81. Kaznatcheev, K. (2013). Optical design of the NSLS-II metrology beamline. Journal of Physics: Conference Series https://dx.doi.org/10.1088/1742-6596/425/16/162009
  82. Schneider, D. & Berman, L. (2013). Three Biomedical Beamlines at NSLS-II for Macromolecular Crystallography and Small-AngleScattering. Journal of Physics: Conference Series https://dx.doi.org/10.1088/1742-6596/425/1/012003
  83. Nazaretski, E. (2013). Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope. Review of Scientific Instruments, 84(3) https://dx.doi.org/10.1063/1.4774387
  84. Yan, H. (2013). Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses. Scientific Reports https://dx.doi.org/10.1038/srep01307
  85. Nazaretski, E. (2013). Pushing the limits: characterisation and performance of the prototype multilayer Laue lenses fluorescence microscope with a view to achieve nm-scale spatial resolution. Diamond Light Source Annual Review 2012/13 https://www.osti.gov/biblio/2564163
  86. Kaznatcheev, K. & Kaznatcheev, K. (2012). Novel approaches in the SR beamline design. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment https://dx.doi.org/10.1016/j.nima.2012.11.090
  87. Qian, S. & Qian, K. (2012). Advance in a nano- accuracy surface profiler with an extended-angle test range. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment https://dx.doi.org/10.1016/j.nima.2012.10.106
  88. Idir, M. & Idir, M. (2012). Current status of the NSLS-II optical metrology laboratory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment https://dx.doi.org/10.1016/j.nima.2012.10.122
  89. Rack, A. & Lee, W. (2012). Hard X-ray multilayer mirror round-robin on the wavefront preservation capabilities of W/B4C coatings. Radiation Physics and Chemistry https://dx.doi.org/10.1016/j.radphyschem.2012.06.015
  90. Wu, H. & Chu, Y. (2012). Nanoresolution radiology of neurons. Journal of Physics D: Applied Physics https://dx.doi.org/10.1088/0022-3727/45/24/242001
  91. Su, P. & Kaznatcheev, K. (2012). Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach. Optics Express https://dx.doi.org/10.1364/OE.20.012393
  92. Chubar, O. (2012). Spectral Performance Of Segmented Adaptive-Gap In-Vacuum Undulators For Storage Rings. JACoW https://www.osti.gov/biblio/2564165
  93. Chubar, O. (2012). Development of Partially-Coherent Wavefront Propagation Simulation Methods for 3rd and 4th Generation Synchrotron Radiation Sources. Proceedings Volume 8141, Advances in Computational Methods for X-Ray Optics https://dx.doi.org/10.1117/12.892812
  94. Medjoubi, K. & Idir, M. (2012). Energy resolution of the CdTe-XPAD detector:calibration and potential for Laue diffractionmeasurements on protein crystals. Journal of Synchrotron Radiation https://dx.doi.org/10.1107/S0909049512004463
  95. De Andrade, V. (2011). Simulation and optimization of the NSLS-II SRX beamline combining ray-tracing and wavefront propagation. Advances in Computational Methods for X-Ray Optics II https://dx.doi.org/10.1117/12.894954
  96. Fluerasu, A. (2011). Analysis of the optical design of the NSLS-II Coherent Hard X-ray beamline. Proceedings Volume 8141, Advances in Computational Methods for X-Ray Optics II https://dx.doi.org/10.1117/12.894129
  97. Yashchuk, V. & Takacs, P. (2011). Calibration of the Modulation Transfer Function of Surface Profilometers with Binary Pseudorandom Test Standards: Expanding the Application Range to Fizeau Interferometers and Electron Microscopes. Optical Engineering https://dx.doi.org/10.1117/1.3622485
  98. Idir, M. (2011). X-ray optics simulation using Gaussian superposition technique. Optics Express https://www.osti.gov/biblio/1034086
  99. Simos, N. & Simos, N. (2011). Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline. AIP Conference Proceedings https://dx.doi.org/10.1063/1.3625326
  100. Conley, R. (2011). Multilayer Laue Lens Growth at NSLS-II. AIP Conference Proceedings https://dx.doi.org/10.1063/1.3625306
  101. Shapiro, D. (2011). Optimization of the Coherent Intensity from Multi-Segment Undulators by Phase Matching. https://dx.doi.org/10.1063/1.3625359
  102. Yashchuk, V. & Takacs, P. (2011). Characterization of electron microscopes with binary pseudo-random multilayer test samples. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment https://dx.doi.org/10.1016/j.nima.2010.11.124
  103. Bachelard, R. & Chubar, O. (2011). Wavefront Analysis of Nonlinear Self-Amplified Spontaneous-Emission Free-Electron Laser Harmonics in the Single-Shot Regime. Physical Review Letters https://dx.doi.org/10.1103/PhysRevLett.106.234801
  104. Bouet, N. & Rogers, L. (2010). WSi2/Si Multilayer Sectioning by Reactive Ion Etching for Multilayer Laue Lens Fabrication. Advances in X-Ray/EUV Optics and Components V https://dx.doi.org/10.1117/12.865306
  105. Tanabe, T. (2010). Progress On Insertion Device Related Activities At the Nsls-Ii and Its Future Plans. Proceedings of IPAC’10 https://www.osti.gov/biblio/1004624
  106. Tanabe, T. & Chubar, O. (2010). Cryogenic Field Measurement of Pr2Fe14B Undulator and Performance Enhancement Options at the NSLS-II. AIP Conference Proceedings https://dx.doi.org/10.1063/1.3463195
  107. Chubar, O. (2010). Performance Optimization for Hard X-ray Microscopy Beamlines Guided by Partially-Coherent Wavefront Propagation Calculations*. https://dx.doi.org/10.1063/1.3463322
  108. Chubar, O. (2010). Parametric Optimization of Undulators for NSLS-II Project Beamlines*. https://dx.doi.org/10.1063/1.3463218
  109. Conley, R. & Rogers, L. (2009). The NSLS-II Multilayer Laue Lens Deposition System. Proceedings Volume 7448, Advances in X-Ray/EUV Optics and Components IV https://dx.doi.org/10.1117/12.842076

Patents and Patent Applications