BNL Home
December 2017
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1

  1. No events scheduled

2

  1. No events scheduled

3

  1. No events scheduled

4

  1. No events scheduled

5

  1. No events scheduled

6

  1. Condensed-Matter Physics & Materials Science Seminar

    3 pm, Conference Room, Building 480

    Hosted by: 'Qiang Li'

    We have been relishing a lot of affluence thanks to energy. Fossil energy provides us fun to drive, warmth to escape from cold, brightness of illumination, etc. However consumption of the fossil fuel produces CO2. The amount of CO2 emission will increase with increasing consumption of fossil energy, gas, oil, and coal year by year. The average of total utilizing efficiency of the primary energy is as low as 30 %, with 70 % exhausted to the air as waste heat. It is clear that improved efficiencies of energy conversion systems could have a significant impact on energy consumption and carbon dioxide emission rate. Where a large sum of heat is localized, mechanical conversion systems can be used to generate electricity. However, most sources of waste heat are widely dispersed. Although technologies of storage and transport of such the dilute heat energy have been developed, most waste heat can't be used effectively. Electricity is a convenient form of energy that is easily transported, redirected, and stored, thus there are a number of advantages to the conversion of waste heat emitted from our living and industrial activities to electricity. Thermoelectric conversion is paid attention as the strongest candidate to generate electricity from dilute waste heat. Oxide materials are considered to be promising ones because of their durability against high temperature, low cost for producing etc. The misfit CoO2 compounds show high thermoelectric efficiency at high temperature in air. Thermoelectric modules using p-type Ca3Co4O9, one of the CoO2 compounds and n-type CaMnO3 have been produced [1, 2]. The maximum power density against area of the substrate of the module reaches 4.3 kW/m2 at 973 K of the heat source temperature [3]. Portable power generation units composed of an oxide thermoelectric module. Water circulation and batteries for air cooling are unnecessary for thermoelectric conversion. The units can generate 2-5 W using heat energy with temperature of 300-8

7

  1. No events scheduled

8

  1. No events scheduled

9

  1. No events scheduled

10

  1. No events scheduled

11

  1. No events scheduled

12

  1. No events scheduled

13

  1. No events scheduled

14

  1. No events scheduled

15

  1. No events scheduled

16

  1. No events scheduled

17

  1. No events scheduled

18

  1. No events scheduled

19

  1. No events scheduled

20

  1. No events scheduled

21

  1. DEC

    21

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    1:30 pm, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Thursday, December 21, 2017, 1:30 pm

    Hosted by: '''John Tranquada'''

    122 transition metal compounds with ThCr2Si2-type structure have been extensively studied because of their wide range of interesting physical properties like superconductivity, valence fluctuations, various magnetic ground states, etc. A subset (ATM2Pn2) of this class consisting of alkaline earth metals (A), 3d transition metals (TM) and pnictogen (Pn) attracted significant interest after discovery of an unconventional superconductivity in 122 iron arsenide compounds. In 122 iron arsenide superconductors, magnetism is in close proximity to the superconductivity and the spin fluctuations are considered as a key component for the pairing mechanism for superconductivity. These properties as well as the wide range of magnetic ground states, found in ATM2As2, motivated a detail studies of the magnetism in these compounds and neutron scattering technique has been extensively used for the study. In this seminar, I will discuss our results of inelastic neutron scattering measurements of the spin fluctuations in two compounds [CaCo1.86As2 and Ca(Fe1-xCox)2As2] of ATM2Pn2 class. First, I will discuss extremely extended spin fluctuations along two directions of reciprocal space in CaCo1.86As2, which shows A-type antiferromagnetic ground states. The result suggests that CaCo1.86As2 is highly-frustrated and is a unique example of highly-frustrated square-lattice system. Next, I will discuss the evolution of the spin fluctuations in Co-doped CaFe2As2 and compare it to that of Co-doped BaFe2As2. In this part, I will also discuss a peculiar suppression of the spin fluctuations with temperature observed in Ca(Fe1-xCox)2As2, x = 0.030 compound, which shows superconducting ground state.

22

23

  1. No events scheduled

24

  1. No events scheduled

25

  1. No events scheduled

26

  1. No events scheduled

27

  1. No events scheduled

28

  1. No events scheduled

29

  1. No events scheduled

30

  1. No events scheduled

31

  1. No events scheduled

  1. DEC

    21

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    "Spin fluctuations in 122 transition metal arsenides measured using inelastic neutron scattering technique"

    Presented by Aashish Sapkota, Ames Laboratory

    1:30 pm, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Thursday, December 21, 2017, 1:30 pm

    Hosted by: '''John Tranquada'''

    122 transition metal compounds with ThCr2Si2-type structure have been extensively studied because of their wide range of interesting physical properties like superconductivity, valence fluctuations, various magnetic ground states, etc. A subset (ATM2Pn2) of this class consisting of alkaline earth metals (A), 3d transition metals (TM) and pnictogen (Pn) attracted significant interest after discovery of an unconventional superconductivity in 122 iron arsenide compounds. In 122 iron arsenide superconductors, magnetism is in close proximity to the superconductivity and the spin fluctuations are considered as a key component for the pairing mechanism for superconductivity. These properties as well as the wide range of magnetic ground states, found in ATM2As2, motivated a detail studies of the magnetism in these compounds and neutron scattering technique has been extensively used for the study. In this seminar, I will discuss our results of inelastic neutron scattering measurements of the spin fluctuations in two compounds [CaCo1.86As2 and Ca(Fe1-xCox)2As2] of ATM2Pn2 class. First, I will discuss extremely extended spin fluctuations along two directions of reciprocal space in CaCo1.86As2, which shows A-type antiferromagnetic ground states. The result suggests that CaCo1.86As2 is highly-frustrated and is a unique example of highly-frustrated square-lattice system. Next, I will discuss the evolution of the spin fluctuations in Co-doped CaFe2As2 and compare it to that of Co-doped BaFe2As2. In this part, I will also discuss a peculiar suppression of the spin fluctuations with temperature observed in Ca(Fe1-xCox)2As2, x = 0.030 compound, which shows superconducting ground state.

  2. JAN

    4

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    "TBA"

    Presented by Derek Meyers, BNL

    11 am, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Thursday, January 4, 2018, 11:00 am

    Hosted by: ''Mark Dean''

    TBA

  3. JAN

    8

    Monday

    Condensed-Matter Physics & Materials Science Seminar

    "TBA"

    Presented by Alla Chikina, Paul Scherrer Institute, Switzerland

    3 pm, ISB Bldg. 734 Seminar Room 201 (upstairs)

    Monday, January 8, 2018, 3:00 pm

    Hosted by: ''Cedomir Petrovic''

    TBA

  4. JAN

    11

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    "Bose condensation of excitons in TiSe2"

    Presented by Peter Abbamonte, University of Illinois at Urbana–Champaign

    1:30 pm, ISB Bldg. 734, Conf. Room 201 (upstairs)

    Thursday, January 11, 2018, 1:30 pm

    Hosted by: ''Peter D. Johnson''

    Bose condensation has shaped our understanding of macroscopic quantum phenomena, having been realized in superconductors, atomic gases, and liquid helium. Excitons are bosons that have been predicted to condense into either a superfluid or an insulating electronic crystal. But definitive evidence for a thermodynamically stable exciton condensate has never been achieved. In this talk I will describe our use of momentum-resolved electron energy-loss spectroscopy (M-EELS) to study the valence plasmon in the transition metal dichalcogenide semimetal, 1T-TiSe2. Near the phase transition temperature, TC = 190 K, the plasmon energy falls to zero at nonzero momentum, indicating dynamical slowing down of plasma fluctuations and crystallization of the valence electrons into an exciton condensate. At low temperature, the plasmon evolves into an amplitude mode of this electronic crystal. Our study represents the first observation of a soft plasmon in any material, the first definitive evidence for exciton condensation in a three-dimensional solid, and the discovery of a new form of matter, "excitonium."

  5. JAN

    12

    Friday

    Condensed-Matter Physics & Materials Science Seminar

    "Singular density fluctuations in the strange metal phase of Bi2Sr2CaCu2O8+x observed with momentum-resolved EELS (M-EELS)"

    Presented by Peter Abbamonte, University of Illinois at Urbana Champaign

    11 am, ISB Bldg. 734, Conf. Room 201 (upstairs)

    Friday, January 12, 2018, 11:00 am

    Hosted by: ''Peter D. Johnson''

    High-temperature superconductivity arises out of an anomalous normal state commonly referred to as a "bad" or "strange" metal, since it lacks the usual signatures of electron quasiparticles. In ordinary metals, such quasiparticles manifest as propagating collective modes encoded in the dynamic charge susceptibility ??(q,?), which describes the response of the system to applied fields. However, the analogous collective modes of a strange metal are currently unknown. Here, we present the first measurement of ??(q,?) for a prototypical strange metal, Bi2.1Sr1.9CaCu2O8+x (BSCCO), using momentum-resolved inelastic electron scattering (M-EELS). We discover a surprising energy- and momentum-independent continuum of fluctuations extending up to 1 eV, at odds with the dispersive plasmons expected in normal metals. This spectrum is found to be temperature-independent across the superconducting phase transition at optimal doping. Tuning the composition to overdoping, where a crossover to Fermi liquid behavior is expected, this momentum-independent continuum is found to persist, though a 0.5 eV gap-like feature now emerges at low temperature. Our results indicate that the phenomenon underlying the strange metal is a singular form a charge dynamics of a new kind, that does not fit into any known picture of quantum critical scaling.

  6. JAN

    23

    Tuesday

    Condensed-Matter Physics & Materials Science Seminar

    "Spin-orbit coupling and electronic correlations in Hund's metals: Sr2RuO4"

    Presented by Minjae Kim, École Polytechnique, France

    1:30 pm, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Tuesday, January 23, 2018, 1:30 pm

    Hosted by: ''Gabi Kotliar''

    We investigate the interplay of spin-orbit coupling (SOC) and Hund's rule coupling driven electronic correlations in Sr2RuO4 using dynamical mean-field theory. We find that the orbital diagonal components of the dynamical electronic correlations are unaffected by the SOC, which validates the concept of a Hund's metal in the presence of SOC. In contrast, SOC itself is enhanced by approximately a factor of two by electronic correlations. We introduce the concept of an energy dependent quasiparticle SOC, which is found to be essential in accounting simultaneously for: (i) the Fermi surface (ii) the low-energy dispersion of quasiparticles and (iii) the splitting between bands at higher binding energy. Our calculations are in good agreement with available experimental data. References: [1-4] [1] C. Veenstra et al., Physical Review Letters 112, 127002 (2014) [2] M. Haverkort et al., Physical Review Letters 101, 026406 (2008) [3] J. Mravlje et al., Physical Review Letters 106, 096401 (2011) [4] M. Kim et al., arXiv preprint arXiv:1707.02462 (2017)

  1. Condensed-Matter Physics & Materials Science Seminar

    "Examples of translational research using thermoelectric oxides"

    Presented by Ryoji Funahashi, National Institute of Advanced Industrial Science & Technology, Japan

    Wednesday, December 6, 2017, 3 pm
    Conference Room, Building 480

    Hosted by: 'Qiang Li'

    We have been relishing a lot of affluence thanks to energy. Fossil energy provides us fun to drive, warmth to escape from cold, brightness of illumination, etc. However consumption of the fossil fuel produces CO2. The amount of CO2 emission will increase with increasing consumption of fossil energy, gas, oil, and coal year by year. The average of total utilizing efficiency of the primary energy is as low as 30 %, with 70 % exhausted to the air as waste heat. It is clear that improved efficiencies of energy conversion systems could have a significant impact on energy consumption and carbon dioxide emission rate. Where a large sum of heat is localized, mechanical conversion systems can be used to generate electricity. However, most sources of waste heat are widely dispersed. Although technologies of storage and transport of such the dilute heat energy have been developed, most waste heat can't be used effectively. Electricity is a convenient form of energy that is easily transported, redirected, and stored, thus there are a number of advantages to the conversion of waste heat emitted from our living and industrial activities to electricity. Thermoelectric conversion is paid attention as the strongest candidate to generate electricity from dilute waste heat. Oxide materials are considered to be promising ones because of their durability against high temperature, low cost for producing etc. The misfit CoO2 compounds show high thermoelectric efficiency at high temperature in air. Thermoelectric modules using p-type Ca3Co4O9, one of the CoO2 compounds and n-type CaMnO3 have been produced [1, 2]. The maximum power density against area of the substrate of the module reaches 4.3 kW/m2 at 973 K of the heat source temperature [3]. Portable power generation units composed of an oxide thermoelectric module. Water circulation and batteries for air cooling are unnecessary for thermoelectric conversion. The units can generate 2-5 W using heat energy with temperature of 300-8

  2. Condensed-Matter Physics & Materials Science Seminar

    "Complementary response of static spin-stripe order and superconductivity to non-magnetic impurities and pressure in cuprates"

    Presented by Zurab Guguchia, Columbia University

    Thursday, November 16, 2017, 1:30 pm
    ISB Bldg. 734, Conference Room 201 (upstairs)

    Hosted by: '''Emil Bozin'''

    Cuprate high-temperature superconductors (HTSs) have complex phase diagrams with multiple competing ordered phases. Understanding to which degree charge, spin, and superconducting orders compete or coexist is paramount for elucidating the microscopic pairing mechanism in the cuprate HTSs. In this talk, i will report some novel results of muonspin rotation (μSR), neutron Scattering and magnetization experiments on non-magnetic Zn impurity and hydrostatic pressure effects on the static spin-stripe order and superconductivity in the La214 cuprates [1,2]. Namely, in La2−xBaxCu1−yZnyO4 (0.11 ≤ x ≤ 0.17) and La1.48Nd0.4Sr0.12Cu1−yZnyO4. Remarkably, it was found that in these systems the spin-stripe ordering temperature Tso decreases linearly with Zn doping y and disappears at y ≈ 4 % , demonstrating the extreme sensitivity of static spin-stripe order to impurities within a CuO2 plane. Moreover, Tso is suppressed in the same manner as the superconducting transition temperature Tc by Zn impurities. We also observed the same pressure evolution of both Tc and Tso in La2−xBaxCuO4, while there is an antagonistic pressure evolution of magnetic volume fraction and superfluid density [1,2,3]. These results indicate that static spin-stripe order and SC pairing correlations develop in a cooperative fashion in La214 cuprates. In other words, the existence of the stripe order requires intertwining with the SC pairing correlations, such as occurs in the proposed pair-density wave (PDW) state [4]. [1] Z. Guguchia et. al., Phys. Rev. B 94, 214511 (2016). [2] Z. Guguchia et. al., Phys. Rev. Lett. 119, 087002 (2017). [3] Z. Guguchia et. al., Phys. Rev. Lett. 113, 057002 (2014). [4] E. Fradkin, S.A. Kivelson, and J.M. Tranquada, Rev. Mod. Phys. 87, 457 (2015).

  3. Condensed-Matter Physics & Materials Science Seminar

    "Quasiparticle spectra from stochastic many-body methods"

    Presented by Vojtech Vlcek, University of California, Los Angeles

    Thursday, November 9, 2017, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: ''Gabi Kotliar''

    I will present new developments and applications of stochastic approaches to electronic structure and many-body perturbation theory, which overcome the steep scaling of conventional deterministic schemes. The general principles of linear-scaling stochastic methods for TDDFT, GW and BSE will be discussed and exemplified on realistic nanoscale systems with more than 5000 valence electrons. The stochastic approaches enable mapping the evolution of optical absorption, spectral functions and quasiparticle energies and lifetimes, as well as the emergence of collective excitations, over the full range from molecules to large bulk-like 3D nanoclusters and 2D layers.

  4. Condensed-Matter Physics & Materials Science Seminar

    "Proximity effects in cuprate/manganite multilayers"

    Presented by Christian Bernhard, University of Fribourg, Switzerland

    Monday, November 6, 2017, 1:30 pm
    ISB Bldg. 734 Seminar Room 201 (upstairs)

    Hosted by: ''''Chris Homes''''

    Recently we observed an intriguing, magnetic-filed-induced insulator-to-metal transition in YBa2Cu3O7/Pr1-xCaxMnO3 (YBCO/PCMO) multilayers [1]. In the low field regime, the response of these multilayers is highly resistive and resembles the one of granular superconductors or frustrated Josephson-networks. Notably, a coherent superconducting response can be restored with a large magnetic field. The latter also suppresses the charge/orbital order of the PCMO layers towards a ferromagnetic state. This coincidence suggests an intimate relationship between the insulator-to-superconductor transition in the YBCO layer and the suppression of the charge/orbital order in the PCMO. I will discuss the evidence, based on resonant x-ray scattering experiments, that the latter induces (or strongly enhances) a static Cu-CDW order in YBCO that is intertwined with superconductivity. [1] B.P.P. Mallett et al., Phys. Rev. B 94, 180503(R) (2016).

  5. Condensed-Matter Physics & Materials Science Seminar

    "Wandering amongst the Feynamn diagrams"

    Presented by Nikolay Prokofiev, University of Massachusetts-Amherst

    Friday, November 3, 2017, 11 am
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: '''Igor Zaliznyak'''

    Feynman diagrams are the most celebrated and powerful tool of theoretical physics usually associated with the analytic approach. I will argue that diagrammatic expansions are also an ideal numerical tool with enormous and yet to be explored potential for solving interacting many-body systems by direct simulation of Feynman diagrams (bare or skeleton) for the proper self-energies and polarization operators up to high order. Though the original series based on are propagators are sign-alternating and often divergent one can determine the answer behind them by using proper series re-summation techniques and working with skeleton diagrams, i.e. by making the entire scheme self-consistent. The bottom line is that the diagrammatic Monte Carlo approach generically solves the computational complexity for interacting fermionic systems. In terms of physical applications, I will disucss results for the Hubbard model, resonant fermi gas at unitarity, and stability of Dirac liquid against strong Coulomb interaction in graphene.

  6. Condensed-Matter Physics & Materials Science Seminar

    "Theory and Computation Guided Discovery of New Thermoelectric Materials"

    Presented by Vladan Stevanovic, Colorado School of Mines & National Renewable Energy Laboratory

    Wednesday, October 25, 2017, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: '''Cedomir Petrovic'''

    Progress in the widespread adoption of all solid heat-to-electricity technologies has largely been hindered by the absence of suitable thermoelectric materials. In pursuit for new thermoelectrics recent advances in large-scale deployment of first principles calculations could be useful in identifying new promising material systems. However, the need to predict electron and phonon transport properties with sufficient accuracy renders direct assessment of the thermoelectric figure of merit (zT) for large numbers of systems unfeasible. This is true even in the case of relatively simple semiconductor materials, which could be described by the computationally inexpensive single particle theories such as density functional theory (DFT). While the state-of-the-art DFT based approaches to charge carrier and heat transport of semiconductors can deliver desired accuracy, they are currently limited to relatively simple chemistries and/or case-by-case studies. In this talk I will discuss integrated theory-computation-experiment efforts in developing a robust set of material descriptors that: (1) are rooted in the Boltzmann transport theory, but do not rely on classic and largely inapplicable constant relaxation time or constant mean free path approximations, (2) are computationally tractable allowing material searches across large chemical spaces, and (3) are sufficiently accurate to provide reliable predictions. Our approach is demonstrated to correctly identify known thermoelectric materials1 and reliably suggest new and promising candidate semiconductors.2 At the end, I will review successes and failures in our quest for new thermoelectrics, and discuss dopability of semiconductors as the critical outstanding challenge in achieving high zT materials. 1. Yan, P. Gorai, B. Ortiz, S. Miller, S. A. Barnett, T. Mason, V. Stevanovic, and E. S. Toberer, "Material descriptors for thermoelectric performance", Energy Environ. Sci. 2. P. Gorai, V. Stevanovic, and E. Tobe

  7. Condensed-Matter Physics & Materials Science Seminar

    "Pressure-driven collapse of Jeff=1/2 electronic state in a honeycomb iridate"

    Presented by Young-June Kim, University of Toronto, Canada

    Friday, October 20, 2017, 3 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: '''Igor Zaliznyak'''

    Orbital and spin degrees of freedom in heavy transition metal compounds can be locked into each other due to strong spin-orbit coupling. The magnetism in this case is described by an effective total angular momentum jeff=1/2 rather than usual spin angular momentum. Furthermore, these jeff=1/2 moments residing on a honeycomb lattice can be coupled through bond-dependent Kitaev interactions. Magnetic properties of some honeycomb lattice iridates, such as Na2IrO3 and Li2IrO3 have been extensively investigated to examine whether Kitaev quantum spin liquid is realized in these compounds. However, the applicability of the jeff=1/2 local moment model in real materials have not been critically scrutinized experimentally. A combination of x-ray absorption spectroscopy, x-ray diffraction, and resonant inelastic x-ray scattering experiments on a honeycomb lattice Li2IrO3 reveals that the jeff=1/2 picture breaks down under high pressure, and electrons take on more itinerant character under this condition.

  8. Condensed-Matter Physics & Materials Science Seminar

    "Domain walls and phase boundaries - new nanoscale functional elements in complex oxides"

    Presented by Jan Seidel, UNSW Sydney

    Monday, October 16, 2017, 1:30 pm
    Bldg. 480, Conference Room

    Hosted by: ''Myung-Geun Han''

    Topological structures in functional materials, such as domain walls and skyrmions, see increased attention due to their properties that can be completely different from that of the parent bulk material [1]. I will discuss recent results on multiferroic phase boundaries, domain walls in BiFeO3 [2, 3, 4, 5, 6] using SPM, TEM and ab-initio theory, and discuss future prospects [7]. References [1] J. Seidel (ed.), Topological structures in ferroic materials: domain walls, skyrmions and vortices, ISBN: 978-3-319-25299-5, Springer, Berlin (2016) [2] P. Sharma, et al., Scientific Reports 6, 32347 (2016) [3] P. Sharma, et al., Advanced Electronic Materials 2, 1600283 (2016) [3] J. Seidel, et al., Advanced Materials 26, 4376 (2014) [4] Y. Heo, et al., Advanced Materials 26, 7568 (2014) [5] Y. Heo et al., ACS Nano, DOI: 10.1021/acsnano.6b07869 (2017) [6] P. Sharma, et al., Advanced Materials Interfaces 3, 1600033 (2016) [7] J. Seidel, Nature Nanotechnology 10, 190 (2015)

  9. Condensed-Matter Physics & Materials Science Seminar

    "Suppression of weak ferromagnetism in ultrathin iridates by interfacial engineering of octahedral rotations"

    Presented by Yuefeng Nie, Nanjing University, China

    Thursday, September 28, 2017, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: '''Weiguo Yin'''

    Layered iridates, Srn+1IrnO3n+1, have drawn great attention since they share remarkable similarities with high-Tc cuprates, including layered crystalline structure, (pseudo) spin ½ states, antiferromagnetic (AFM) Mott insulating ground state, Fermi arcs, and V shape energy gap, etc. Nonetheless, direct evidences of superconductivity such as zero resistivity and Meissner effect are still lacking up to date. The strong spin-orbit coupling and IrO6 octahedral rotations in 5d iridates result in a canted AFM ground state with weak ferromagnetic moments in each IrO2 plane. Here, we propose to suppress the weak ferromagnetism by suppressing the octahedral rotations in iridates, which may facilitate the Cooper pairing. Using a combination of reactive molecular beam epitaxy (MBE), in situ angleresolved photoemission spectroscopy (ARPES) and first principle calculations, we investigate the evolution of octahedral rotations, electronic structure and magnetic ordering in ultra-thin SrIrO3 films grown on (001) SrTiO3 substrate. Our experimental results and theoretical calculations show that octahedral rotations and weak ferromagnetic moments are fully suppressed in 1 and 2 unit cell thick SrIrO3 films through interfacial clamping effects. If time allows, I will also present our recent work on the new understanding of RHEED oscillations in the growth of oxides and the chemically specific termination control of oxide interfaces via layerby- layer mean inner potential engineering.

  10. Condensed-Matter Physics & Materials Science Seminar

    "Ultrafast TEM and Time-of-Flight EELS using microwave cavities"

    Presented by Jom Luiten, Eindhoven University of Technology, Netherlands

    Friday, September 22, 2017, 11 am
    Bldg. 480, Conference Room

    Hosted by: '''Yimei Zhu'''

    Ultrafast Transmission Electron Microscopy (U-TEM) has become a very important tool for the study of ultrafast phenomena at (sub-)nm length scales and (sub-)ps time scales. U-TEM is usually based on the creation of ultrashort electron pulses by femtosecond laser photoemission from a flat cathode, with the result that both the beam quality and the average current are significantly less than in state-of-the-art continuous-beam TEMs. At Eindhoven University we have developed U-TEM in which ultrashort electron pulses are produced by using a 3 GHz deflecting microwave cavity in TM110 mode to sweep a high-brightnes continuous beam across a slit [1]. We have demonstrated ultrafast beam chopping with conservation of the beam quality and the sub-eV energy spread of the FEG source of an adapted 200 keV Tecnai TEM, enabling atomic resolution with sub-ps temporal resolution at 3 GHz rep rate [2] In addition we have developed a new method for doing Time-of-Flight Electron Energy Loss Spectroscopy (ToF-EELS) based on the combined use of two TM110 deflecting cavities and two TM010 (de)compression cavities. The first 'chopping' TM110 cavity produces ultrashort electron pulses which are sent through a sample. Energy loss in the sample translates into reduction of the electron velocity and thus into a later arrival time at the detector, which is measured with a synchronized second TM110 'streak' cavity. In this way an energy resolution of 12 eV at 30 keV has been demonstrated [3]. By adding a TM010 (de)compression cavity after the sample, the longitudinal phase space can be manipulated in such a way that the energy resolution is improved to 2 eV (to be published). By adding a second TM110 cavity before the sample, full control over the longitudinal phase space can be achieved. Detailed charged particle tracking simulations show that an energy resolution of 20 meV combined with a temporal resolution of 2 ps can be achieved; or, alternatively, 2

  11. Condensed-Matter Physics & Materials Science Seminar

    "Two new applications of geometric critical phenomena for disordered electron systems"

    Presented by Matthew Foster, Rice University

    Thursday, September 21, 2017, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: ''Robert Konik''

    I will discuss two very recent results relating to the properties of electrons in two spatial dimensions (2D), subject to the effects of quenched disorder (impurities) and quantum interference [Anderson (de)localization]. In both cases, the key physics is tied to classical geometric critical phenomena in 2D. I will first present numerical evidence that strongly suggests the equivalence of disordered surface states of topological superconductors and geometric percolation. Percolation is known to play a role in quantum Hall systems with magnetic fields. Our unexpected result implies that percolation applies to topological superconductor surface states in the absence of time-reversal symmetry breaking. Moreover, the usual "even-odd" effect that occurs in such a system (as identified by Pruisken in the integer quantum Hall effect and by Haldane for spin chains) is found to be absent. Second, I will discuss a "toy model" for the ergodic to many-body localized phase transition in 2D, and relate it to an effective self-interacting walk. I will present analytical results of a controlled expansion which suggest that the transition can be viewed as a "dephasing catastrophe."

  12. Condensed-Matter Physics & Materials Science Seminar

    "Experiments on electron hydrodynamics with and without applied magnetic fields"

    Presented by Andrew Mackenzie, Max-Planck-Institute, Germany

    Wednesday, August 23, 2017, 1:30 pm
    Bldg. 734, ISB Conf. Room 201 (upstairs)

    Hosted by: '''Cedomir Petrovic'''

    Will discuss experiments aimed at probing signatures of viscous contributions to electrical transport in ultra pure metallic systems. The hydrodynamic regime was reached in semiconductor heterostructures in the 1990s, but has only recently come into reach in naturally occurring compounds. I will focus on our group's work on layered delafossite metals, but possibly also discuss results from other groups on different material families.

  13. Condensed-Matter Physics & Materials Science Seminar

    "Resonant inelastic X-ray scattering on "moderately correlated" quantum materials"

    Presented by L. Andrew Wray, New York University

    Thursday, June 22, 2017, 1 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: ''''Mark Dean''''

    The resonant inelastic X-ray scattering (RIXS) technique is best known for significant breakthroughs in the investigation of strongly correlated materials such as cuprates. However, the rapid advancement of RIXS spectrographs has made it increasingly attractive to apply the technique to a broad range of quantum materials outside of this comfort zone. This talk will review lessons learned from our recent measurements on material systems that feature a balance of correlated and itinerant physics, including VO2, the hidden order compound URu2Si2, and Prussian blue analogue battery electrodes. RIXS spectra enable the first observation of important collective modes for these systems, and provide a look into how correlated electron symmetries are melted - or persist! - in relatively itinerant and covalent environments. The data also highlight the need for improved theoretical modeling and higher photon throughput to achieve deeper insights.

  14. Condensed-Matter Physics & Materials Science Seminar

    "Tailoring Lattice and Charge at Complex Oxide Nanostructures and Interfaces"

    Presented by Xia Hong, University of Nebraska-Lincoln

    Tuesday, June 20, 2017, 11 am
    Bldg. 480, Conference Room

    Hosted by: 'Yimei Zhu'

    Capitalizing on the energy competition of charge itineracy with the strong electron-electron and electron-phonon couplings, nanoscale manipulation of the charge and lattice degrees of freedom in strongly correlated oxides can often lead to new functionalities that are inaccessible in the bulk form. In this talk, I will present our studies of the emerging phenomena at epitaxial correlated oxide nanostructures and hetero-interfaces that result from the nanoscale lattice and charge control. By creating nanoscale periodic depth modulation, we have achieved a 50-fold enhancement of the magnetic crystalline anisotropy in ultrathin colossal magnetoresistive (La,Sr)MnO3, which is attributed to a non-equilibrium strain distribution established in the nanostructures [1]. I will also discuss the intricate interplay between epitaxial strain and electric field effect in determining the correlated transport of the charge transfer type Mott insulator (Sm,Nd)NiO3 [2,3], and how the interfacial charge transfer between two correlated oxides can be exploited to effectively engineer the performance of ferroelectric-gated Mott transistors [4]. [1] A. Rajapitamahuni et al., PRL 116, 187201 (2016). [2] L. Zhang et al., JPCM 27, 132201 (2015). [3] L. Zhang et al., APL 107, 152906 (2015). [4] X. Chen et al., Adv. Mater, in press (2017).

  15. Condensed-Matter Physics & Materials Science Seminar

    "Laser-driven Pulsed Neutron Sources as a Potential Pool-side Characterization Tool for Nuclear Fuels"

    Presented by Sven Vogel, Los Alamos National Laboratory

    Monday, June 19, 2017, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: '''Emil Bozin'''

    The unique advantages of neutrons for characterization of nuclear fuel materials [1] are applied at the pulsed spallation neutron source at LANSCE to accelerate the development and ultimately licensing of new nuclear fuel forms. Neutrons allow to characterize the crystallography of phases consisting of heavy elements (e.g. uranium) and light elements (e.g. oxygen, nitrogen, or silicon) [2]. The penetration ability in combination with comparably large (e.g. cm sized) beam spots provide microstructural characterization of typical fuel geometries for phase composition, strains, and textures from neutron diffraction. In parallel, we are developing energy-resolved neutron imaging and tomography with which we can complement diffraction characterization. This unique approach not only allows to visualize cracks, arrangement of fuel pellets in rodlets etc., but also characterization of isotope or element densities by means of neutron absorption resonance analysis [3]. Laser-driven pulsed neutron sources [4] have the potential to provide these capabilities "pool-side", e.g. at the Advanced Test Reactor at Idaho National Laboratory. Compared to proton accelerator driven spallation sources, requiring investments exceeding $1B, the investment cost for a laser-driven neutron source would be of the order of several $10M with the potential of similar flux to that of a smaller, earlier generation spallation neutron source. Compared to electron accelerator-driven neutron sources, the flux of a laser-driven source would be at least one order of magnitude higher. Compared to reactor neutron sources, the pulse structure of the laser-driven neutron source would enable unique characterization not possible with steady-state reactor neutrons. In this presentation, we provide an overview of our recent accomplishments in fuel characterization for accident-tolerant fuel consisting of uranium nitride/uranium silicide composite fuels as well as metallic fuels.

  16. Condensed-Matter Physics & Materials Science Seminar

    "A model of chiral spin liquids with tunable edge states"

    Presented by Christopher Mudry, Paul Scherrer Institute, Switzerland

    Thursday, June 15, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: 'Alexei Tsvelik'

    We construct a quantum field theory in (2+1)-dimensional spacetime for strongly interacting Majorana fields that is amenable to a mean-field approximation. The mean-field phase diagram predicts the existence of two competing phases, one of which supports chiral non-Abelian topological order, while the other supports chiral Abelian topological order. The two mean-field phases are separated by a continuous phase transition. This quantum field theory captures the low-energy physics of quantum spin-1/2 localized on the sites of a lattice whose interactions are $SU(2)$ symmetric but break time-reversal symmetry. The lattice geometry can be interpreted as a one-dimensional stacking of two-leg ladders or as a bilayer of two square lattices. Both incompressible ground states can thus be thought of as chiral spin liquids in two-dimensional space supporting non-Abelian and Abelian topological order, respectively.

  17. Condensed-Matter Physics & Materials Science Seminar

    "Thin-Film Alchemy: Using Epitaxial Engineering to Unleash the Hidden Properties of Oxides"

    Presented by Darrell G. Schlom, Cornell University

    Monday, May 15, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: 'Ivan Bozovic'

    Guided by theory, unparalleled properties—those of hidden ground states—are being unleashed by exploiting large strains in concert with the ability to precisely control dimensionality and stabilize metastable phases in epitaxial oxide heterostructures. For example, materials that are not ferroelectric or ferromagnetic in their unstrained state can be transmuted into materials that are both at the same time. Similarly, new tunable dielectrics with unparalleled performance have been created as well as a new single-phase multiferroic material where ferroelectricity and strong magnetic ordering are coupled near room-temperature. These are just three examples of the unparalleled properties—those of hidden ground states—being unleashed in epitaxial oxide heterostructures utilizing thin film alchemy

  18. Condensed-Matter Physics & Materials Science Seminar

    "Transient Dynamics of Strongly Correlated Electrons After Sudden Excitations"

    Presented by Marco Schiro, Institut de Physique Theorique (IPhT), CEA, Saclay, France

    Thursday, May 4, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: 'Robert Konik'

    The development of pump-probe spectroscopies with femtosecond time resolution, which allows to track the dynamics of electronic degrees of freedom in solids under optical excitations, opens up a new window to understand strongly correlated materials and offers the intriguing possibility of controlling their properties with light, on ultra-fast time scales. Triggered by these advances, the interest around time dependent phenomena in quantum many body systems has recently substantially grown. In this talk will review recent progress in understanding transient dynamics of electrons in correlated metals, Mott Insulators and superconductors. I will show that quite generically these systems display very sharp dynamical transitions as a function of the external perturbation, in correspondence of which the lattice response and the sensitivity to density inhomogeneities can be greatly enhanced.

  19. Condensed-Matter Physics & Materials Science Seminar

    "Spin-liquids in novel triangular and kagome rare-earth magnets"

    Presented by Martin Mourigal, Georgia Tech

    Friday, April 28, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: '''Igor Zaliznyak'''

    Insulating magnets combining the effects of geometrical frustration with strong spin-orbit coupling offer a prime route to realize correlated quantum states with exotic ground-states and excitations. Spin-space anisotropy and bond-directional magnetic exchange interactions are naturally present in rare-earth oxides. One of the most celebrated consequence is the existence of classical and quantum "spin-ice" physics in rare-earth pyrochlores, materials in which magnetic ions occupy a three-dimensional network of corner-sharing tetrahedra. In this talk, I will present the discovery of distinct flavors of exotic magnetic matter in families of rare-earth oxides with two-dimensional kagome [1] and triangular [2] geometries. This experimental work relies on recent advances in materials synthesis and combines thermodynamic characterization with state-of-the-art neutron scattering experiments to unravel the classical or quantum nature of these newly discovered quasi-two-dimensional spin-liquids. [1] Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14, J. A. M. Paddison, H. S. Ong, J. O. Hamp, P. Mukherjee, X. Bai, M. G. Tucker, N. P. Butch, C. Castelnovo, M. Mourigal, and S. E. Dutton, Nature Communications 7, 13842 (2016). [2] Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4, J. A. M. Paddison, M. Daum, Z. L. Dun, G. Ehlers, Y. Liu, M. B. Stone, H. D. Zhou, and M. Mourigal, Nature Physics AOP (2016).

  20. Condensed-Matter Physics & Materials Science Seminar

    "Magnetometry Study of Underdoped Cuprate YBa2Cu3O6.55"

    Presented by Fan Yu, University of Michigan

    Friday, April 28, 2017, 11 am
    Bldg. 734, ISB. Conf. Rm. 168

    Hosted by: '''''''Qiang Li'''''''

    This talk would be focused on my study of the phase diagram of underdoped cuprate YBa2Cu3O6.55 using torque magnetometry as well as my exploration of extending magnetometry method into even higher magnetic fields (>45T) using pulsed magnet. The complex phase diagrams of cuprates are sometimes referred to as "competing orders", where a large variety of ordering tendencies are known to (co-)exist. Our experiment managed to reveal an anomaly on the magnetic susceptibility, which we believe was related to charge density wave transition. Particularly interesting is that this anomaly is observed in the strong diamagnetic regime where vortex liquid exists. We believe this should be considered as a direct experimental evidence for the picture of "competing orders". To further our understanding of the quantum vortex liquid, experiments at mK temperatures and at magnetic field exceeding 40 Tesla are necessary. During my PhD study, considerable amount of time was devoted to developing a reliable magnetometry method utilizing the pulsed magnet at NHMFL, Los Alamos. I would like to present my trail-and-error as well as the proposition of "time-delayed probe design", which should be able to bypass the inherent noise of a pulsed environment.

  21. Condensed-Matter Physics & Materials Science Seminar

    "Unpaired Spins in Superconductors: From Assassin to Enabler"

    Presented by Jeffrey Lynn, NIST Center for Neutron Research, National Institute of Standards and Technology

    Thursday, April 20, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: ''''Igor Zaliznyak''''

    The magnetic properties of superconductors have a rich and interesting history, and we will briefly review some highlights. Early work showed that even tiny concentrations of magnetic impurities destroyed the superconducting pairing through the exchange-driven spin depairing mechanism, prohibiting any possibility of magnetic order coexisting with superconductivity. The first exceptions to this rule were provided by the cubic rare-earth substituted CeRu2 alloys, followed by the ternary Chevrel-phase superconductors (e.g. HoMo6S8) and related compounds, where long range magnetic order coexists or competes with superconductivity. The very low magnetic ordering temperatures (~1 K) suggested that dipolar rather than exchange interactions dominate, thus (it was thought) allowing the coexistence. These materials also provided the first examples of the competition between ferromagnetism and superconductivity. In the newer borocarbide class of magnetic superconductors (e.g. ErNi2B2C), however, it became clear that the magnetic order is in fact exchange driven. The borocarbides also provided the first example of the spontaneous formation of flux quanta (vortices). For the cuprate and iron-based superconductors (formerly known as "high Tc") we now have come full circle, as the spins are not only tolerated but are intimately tied to the superconductivity. The "parent" cuprate systems are Mott-Hubbard antiferromagnetic insulators with very strong magnetic interactions that are two-dimensional in nature. These strong exchange interactions survive into the superconducting state, yielding highly correlated electrons that participate directly in the superconducting pairing. The "parent" materials of the new iron-based high TC superconductors are also antiferromagnets with very energetic spin excitations, and in the superconducting regime they form a "magnetic resonance" that is directly tied to the superconducting order parameter, ju

  22. Condensed-Matter Physics & Materials Science Seminar

    "Listening to the hydrodynamic noise of Dirac fluid in graphene"

    Presented by Kin Chung Fong, Raytheon BBN Technologies and Harvard University

    Tuesday, April 18, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: 'Qiang Li'

    Interactions between the Dirac fermions in graphene can lead to new collective behavior described by hydrodynamics. By listening to the Johnson noise of the electrons, we are able to probe simultaneously the thermal and electrical transport of the Dirac fluid and observe how it departs from Fermi liquid physics. At high temperature near the neutrality point, we find a strong enhancement of the thermal conductivity and breakdown of Wiedemann-Franz law in graphene. This is attributed to the non-degenerate electrons and holes forming a strongly coupled Dirac fluid. At lower temperatures beyond the hydrodynamic behavior, the Dirac fermions are in extreme thermal isolation with minute specific heat that can be exploited for ultra-sensitive photon detection. We will present our latest experimental result towards observing single microwave photons and explore its role in scaling up the superconducting qubit systems. Our model suggests the graphene-based Josephson junction single photon detector can have a high-speed, negligible dark count, and high intrinsic quantum efficiency for applications in quantum information science and technologies. Ref: Science 351, 1058 (2016)

  23. Condensed-Matter Physics & Materials Science Seminar

    "Electronic Squeezing of Pumped Phonons: Negative $U$ and Transient Superconductivity"

    Presented by Dante Kennes, Columbia University

    Thursday, April 13, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: '''Neil Robinson'''

    Advances in light sources and time resolved spectroscopy have made it possible to excite specific atomic vibrations in solids and to observe the resulting changes in electronic properties but the mechanism by which phonon excitation causes qualitative changes in electronic properties has remained unclear. Here we show that the dominant symmetry-allowed coupling between electron density and dipole active modes implies an electron density-dependent squeezing of the phonon state which provides an attractive contribution to the electron-electron interaction, independent of the sign of the bare electron-phonon coupling and with a magnitude proportional to the degree of laser-induced phonon excitation. Reasonable excitation amplitudes lead to non-negligible attractive interactions that may cause significant transient changes in electronic properties including superconductivity. The mechanism is generically applicable to a wide range of systems, offering a promising route to manipulating and controlling electronic phase behavior in novel materials.

  24. Condensed-Matter Physics & Materials Science Seminar

    "Explore Mesoscopic Physics in Strongly Correlated Electron Materials with IR near-field microscopy and spectroscopy"

    Presented by Mengkun Liu, Stony Brook University

    Thursday, March 30, 2017, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: 'Cedomir Petrovic'

    In strongly correlated electron materials, the delicate interplay between spin, charge, and lattice degrees of freedom often leads to extremely rich phase diagrams exhibiting intrinsic phase inhomogeneities. The key to understanding such complexities usually lies in the characterization and control of these materials at fundamental energy, time and length scales. I will use this opportunity to report the recent advances in the IR and THz near-field microscopy and spectroscopy, and explain how they can be used to probe electronic/structural phase transitions with unprecedented spatial and temporal resolutions. Specifically, with scanning near-field infrared microscopy we resolved the insulator to metal phase transitions in 3d (VO2), 4d (Ca2RuO4) and 4f (SmS) materials with ~10 nm resolution over a broad spectral range. The results set the stage for future spectroscopic investigations to access the fundamental properties of complex materials.

  25. Condensed-Matter Physics & Materials Science Seminar

    "Thermalization and light cones in a model with weak integrability breaking"

    Presented by Stefan Groha, University of Oxford, United Kingdom

    Tuesday, March 28, 2017, 11 am
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: '''Neil Robinson'''

    We employ equation of motion techniques to study the non-equilibrium dynamics in a lattice model of weakly interacting spinless fermions. Our model provides a simple setting for analyzing the effects of weak integrability breaking perturbations on the time evolution after a quantum quench. We establish the accuracy of the method by comparing results at short and intermediate times to time-dependent density matrix renormalization group computations. For sufficiently weak integrability-breaking interactions we always observe prethermalization plateaux, where local observables relax to non-thermal values at intermediate time scales. At later times a crossover towards thermal behaviour sets in. We determine the associated time scale, which depends on the initial state, the band structure of the non-interacting theory, and the strength of the integrability breaking perturbation. Our method allows us to analyze in some detail the spreading of correlations and in particular the structure of the associated light cones in our model. We find that the interior and exterior of the light cone are separated by an intermediate region, the temporal width of which appears to scale with a universal power-law t 1/3.

  26. Condensed-Matter Physics & Materials Science Seminar

    "Resonant Inelastic X-ray Scattering and X-ray Emission Spectroscopy of Iron Pnictide Superconductors"

    Presented by Jonathan Pelliciari, Paul Scherrer Institute, Switzerland

    Monday, March 27, 2017, 10 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: 'Mark Dean'

    I will describe Resonant Inelastic X-Ray Scattering (RIXS) experiments performed at the Swiss Light Source focusing on the detection of high-energy spin fluctuations on iron pnictides. I will show that RIXS has been successfully used to extract the spin excitation spectrum on NaFeAs, BaFe2As2, EuFe2As2 and SmFeAsO, parent compounds [1-3]. We investigated electron-doped NaFe1-xCoxAs observing the persistence of broad dispersive magnetic excitations in optimal and overdoped samples [1]. The energy of such modes is unaffected by doping and the magnetic weight per iron atom of magnons / paramagnons remains constant, demonstrating the impurity role of Co doping. The persistence of magnetic spectral weight is also caught by theoretical calculations. In the second part of the talk, I will present a combined Fe-L3 RIXS and Fe-Kβ X-rays emission spectroscopy (XES) study of isovalently doped BaFe2(As1-xPx)2 spanning a large portion of the phase diagram. RIXS measurements find the persistence of broad dispersive magnetic excitations for all doping levels. Remarkably, the energy of such modes is strongly hardened by doping differently from the cases of electron- and hole-doped BaFe2As2 [5]. On the other hand, XES experiments show a gradual quenching of the local magnetic moment, which is intriguing if compared to the behavior of spin correlations. We link the unconventional evolution of magnetism to the shift from 2- to 3-dimensional electronic structure of the system, hand in hand with the warping of the Fermi surface. Combined together these findings help to shed light on the real degree of electronic correlations in Fe pnictides. References [1] J. Pelliciari et al., Phys. Rev. B, 93, 134515 (2016); [2] J. Pelliciari et al., Appl. Phys. Lett. 109, 122601 (2016); [3] J. Pelliciari et al., "Local and collective magnetism of EuFe2As2" accepted in Phys. Rev. B (2017); [4] K. J. Zhou et al, Nat. Comm., 4, 1470 (2013)

  27. Condensed-Matter Physics & Materials Science Seminar

    "Shining a light on high-Tc superconductivity"

    Presented by Peter Johnson, BNL

    Friday, March 24, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: '''Igor Zaliznyak'''

    TBD

  28. Condensed-Matter Physics & Materials Science Seminar

    "Nematic quantum paramagnet and possible application to FeSe"

    Presented by Fa Wang, International Center for Quantum Materials Peking University, China

    Thursday, March 23, 2017, 11 am
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: ''Weiguo Yin''

    The nematic phases in iron pnictides are in close proximity to the stripe antiferromagnetic order, suggesting that magnetism is the driving force for the spontaneous 4-fold crystal rotation symmetry breaking. In contrast, bulk FeSe shows a nematic phase below 90K at ambient pressure, but has no magnetic long range order down to very low temperature. This prompts suggestions that the nematicity in FeSe is driven by some other mechanism. We argue that magnetic correlation can still drive nematic order in the absence of magnetic long-range order. By field theoretical considerations and exact diagonalization results on finite size lattices, we conclude that the paramagnetic phase in frustrated spin-1 J_1-J_2 model on square lattice is likely a "nematic quantum paramagnet", which breaks only the crystal 4-fold rotation symmetry. The prototype wavefunctions of such quantum ground states are horizontal(vertical) aligned spin-1 AKLT chains. We suggest that the local spins in FeSe may form this phase due to strong frustration. One unique consequence of this proposal is that the nematic paramagnetic phase will be close to both stripe and Neel antiferromagnetic order, and will thus host low but finite energy spin fluctuations at both ordering wavevectors. Reference: Fa Wang, S. A. Kivelson, and Dung-Hai Lee, Nat. Phys. 11, 959 (2015)

  29. Condensed-Matter Physics & Materials Science Seminar

    "Transport and signatures of Mottness versus Hundness in strongly correlated metals"

    Presented by Xiaoyu Deng, Rutgers

    Thursday, March 9, 2017, 11 am
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: ''Gabi Kotliar''

    In this seminar I will focus two fundamental aspects of strongly correlated metals: the transport properties and the origin of correlation. Recent advances enables us to study quantitatively various properties of two archetypal correlated oxides, vanadium oxides and ruthenates, using the LDA+DMFT method. Both are strongly correlation, these two materials are quite different in their origins of correlation: V2O3 is proximate to a Mott state while Sr2RuO4 is not. Thus V2O3 is regarded as a prototype Mott system, while recent studies emphasize that Sr2RuO4 belongs to new category termed "Hund's metal" in which Hund's coupling is responsible for the correlations. We carried out a systematical theoretical study on the transport properties of V2O3 and ruthenates family. Our computed resistivity and optical conductivity are in very good agreement with experimental measurements, which clearly demonstrates that the strong correlation dominates the transport of this material , despite their origin of correlation. We demonstrated that "resilient quasiparticles" dominates the transport. Furthermore by expressing the resistivity in terms of an effective plasma frequency and an effective scattering rate, we uncover the so-called "hidden Fermi liquid" behavior. We identified signatures of Mottness and Hundness by a comparative study of V2O3 and Sr2RuO4. In V2O3 the low temperature coherent resonance emerges from the pseudogap regime appearing at high temperature between incoherent peaks, while in Sr2RuO4, it emerges from a single incoherent peak with large finite value at the Fermi level.. We show that these two contrasting scenarios features interesting behaviors in the local properties of correlated atoms including charge fluctuations, spin and orbit susceptibility and entropy. The findings shed new lights on the understanding of strongly correlated metals.

  30. Condensed-Matter Physics & Materials Science Seminar

    "Ab Initio electronic structure of solids: correlation effects beyond the GW method"

    Presented by Andrei Kutepov, Rutgers University

    Thursday, March 2, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: ''''Gabi Kotliar''''

    TBA

  31. Condensed-Matter Physics & Materials Science Seminar

    "Thermalization and chaos in quantum systems"

    Presented by Sriram Ganeshan, Stony Brook University

    Tuesday, February 14, 2017, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: '''Robert Konik'''

    Thermalization, a common phenomenon in various physical settings, can naturally fail in certain isolated disordered quantum systems, challenging basic tenets of quantum statistical mechanics. Many body localization (MBL) is a canonical example of such an intriguing scenario and, therefore, attracted tremendous attention from condensed matter, statistical physics, and atomic physics communities. Considerable effort has recently gone into establishing the existence of the MBL phase, and the nature of dynamical phase transition from MBL to the thermal phase. However, understanding instabilities to the MBL phase that may lead to the complete or partial restoration of thermalization is still an open question. In this talk, I would focus on two such instabilities to the MBL phase coming from single particle mobility edge and the presence of extensive degeneracy in the many body spectrum. The goal is to identify the most robust form of MBL (in the presence of instabilities) to gain insight into the mechanisms of quantum thermalization.

  32. Condensed-Matter Physics & Materials Science Seminar

    "Anion-based approaches to engineering functionality in perovskite oxide heterostructures"

    Presented by Steve May, Drexel University

    Thursday, January 26, 2017, 1:30 pm
    ISB Bldg. 734, Conf. Room 201 (upstairs)

    Hosted by: ''Mark Dean''

    Scientific interest in ABO3 perovskite oxides remains intense due to the wide range of physical behavior present in these materials. The ability to control the position, occupation, and composition of the anion site has recently emerged as a new route to tune properties in epitaxial perovskites. This talk will focus on recent and ongoing efforts aimed at developing anion-based approaches to tailor electronic, optical and magnetic properties in oxide heterostructures. First, I will discuss how the position of the oxygen anions can be controlled to stabilize non-bulk-like bond angles and lengths, thereby modifying electronic and magnetic behavior in manganite films and superlattices. In the second half of the talk, I will describe efforts focused on controlling the occupation and composition of the anion site, including reversible oxidation/reduction in thin La1/3Sr2/3FeO3-? films and topotactic fluorination reactions to realize oxyfluoride films

  33. Condensed-Matter Physics & Materials Science Seminar

    "Ultrafast Dynamical Phenomena in Nanostructural Materials by 4D Electron Microscopy"

    Presented by Xuewen Fu, California Institute of Technology

    Tuesday, January 24, 2017, 2 pm
    Building 480, Conference Room

    Hosted by: ''Yimei Zhu''

  34. Condensed-Matter Physics & Materials Science Seminar

    "Creation and Control of Low Dimensional Electron System in Transition Metal Oxides"

    Presented by Milan Radovic, Paul Scherer Institut, Switzerland

    Monday, January 23, 2017, 11 am
    Building 734, conference room 201

    Hosted by: '''Cedomir Petrovic'''

    Transition Metal Oxides (TMOs) exhibit unique and multifunctional electronic properties (such as high-temperature superconductivity, colossal magnetoresistance, metal-insulator transitions, etc.) directly related to the spin and orbital degrees of freedom of the transition metal d-states. Furthermore, their iso-structural nature permits realization of heterostructures where novel unexpected electronic properties take place. Engineering transition metal oxide surfaces and interfaces carries the potential for achieving new physical properties that radically differ from those of the constituent bulk materials. This is the case of oxide-lowDEGs, which recently showed extraordinary occurrences, including interfacial superconductivity, magnetism, large tuneable spin-orbit coupling and indications of topological states. In my talk, I will present recent spin resolved Angle Resolved Photoemission Spectroscopy (ARPES) measurements of the low dimensional electron gas at SrTiO3 [1, 2, 3], TiO2-anatase and Sr1-xBaxTiO3 showing that these materials have capability for the realization of TMO based electronic device. References: [1] N. C. Plumb, M. Salluzzo, E. Razzoli, M. Månsson, M. Falub, J. Krempasky, C. E. Matt, J. Chang, J. Minár, J. Braun, H. Ebert, B. Delley, K.-J. Zhou, C. Monney, T. Schmitt, M. Shi, J. Mesot1, C. Quitmann, L. Patthey, M. Radovic, Phys. Rev. Lett. 113, 086801 (2014). [2] A. F. Santander-Syro, F. Fortuna, C. Bareille, T. C. Rodel, G. Landolt, N. C. Plumb, J. H. Dil, and M. Radovic, Nature Materials, 13, 1085–1090 doi:10.1038/nmat4107 (2014). [3] Z. Wang, S. McKeown Walker, A. Tamai, Z. Ristic, F.Y. Bruno, A. de la Torre, S. Ricco, N.C. Plumb, M. Shi, P. Hlawenka, J. Sanchez-Barriga, A. Varykhalov, T.K. Kim, M. Hoesch, P.D.C. King, W. Meevasana, U. Diebold, J. Mesot, M. Radovic, and F. Baumberger, Nature Materials 15, 835–839 (2016) doi:10.1038/nmat4623 (2016).

  35. Condensed-Matter Physics & Materials Science Seminar

    "Transient Dynamics of Strongly Correlated Electrons After Sudden Excitations"

    Presented by Marco Schiro, Institut de Physique Theorique (IPhT), CEA, Saclay, France

    Friday, January 13, 2017, 1:30 pm
    Seminar Room 2nd Floor Bldg 734

    Hosted by: 'Robert Konik'

    The development of pump-probe spectroscopies with femtosecond time resolution, which allows to track the dynamics of electronic degrees of freedom in solids under optical excitations, opens up a new window to understand strongly correlated materials and offers the intriguing possibility of controlling their properties with light, on ultra-fast time scales. Triggered by these advances, the interest around time dependent phenomena in quantum many body systems has recently substantially grown. In this talk will review recent progress in understanding transient dynamics of electrons in correlated metals, Mott Insulators and superconductors. I will show that quite generically these systems display very sharp dynamical transitions as a function of the external perturbation, in correspondence of which the lattice response and the sensitivity to density inhomogeneities can be greatly enhanced.

Currently showing events from the past year. See all past events »