General Lab Information

Neutrino and Nuclear Chemistry banner image

2024

  1. No publications.

2023

  1. Ajimura, S.;Cheoun, M.K.;Choi, J.H.;Choi, J.Y.;Dodo, T.;Goh, J.;Haga, K.;Harada, M.;Hasegawa, S.;Hiraiwa, T.;Hwang, W.;Iida, T.;Jang, H.I.;Jang, J.S.;Jeon, H.;Jeon, S.;Joo, K.K.;Jung, D.E.;Kang, S.K.;Kasugai, Y.;Kawasaki, T.;Kim, E.J.;Kim, J.Y.;Kim, S.B.;Kim, W.;Kinoshita, H.;Konno, T.;Lee, et al. (2023). The acrylic vessel for JSNS2-II neutrino target. Journal of Instrumentation, 18(12), T12001 https://dx.doi.org/10.1088/1748-0221/18/12/t12001
  2. Callaghan, E. J.; Kaptanoglu, T.; Smiley, M.; Yeh, M.; Gann, G. D. Orebi (2023). Characterization of the scintillation response of water-based liquid scintillator to alpha particles, and implications for particle identification. The European Physical Journal C, 83(11), Article 1094 https://dx.doi.org/10.1140/epjc/s10052-023-12278-0
  3. Auty, D.J.; Bartlett, D.; Biller, S.D.; Chauhan, D. ;Chen, M.; Chkvorets, O.; Connolly, S.; Dai, X.; Fletcher, E.; Frankiewicz, K.; Gooding, D.; Grant, C.; Hall, S.; Horne, D.; Hans, S.; Hreljac, B.; Kaptanoglu, T.; Krar, B.; Kraus, C.; Kroupová, T.; Lam, I.; Liu, Y.; Maguire, S.; Miller, C.; et al (2023). A method to load tellurium in liquid scintillator for the study of neutrinoless double beta decay. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1051, 168204 https://dx.doi.org/10.1016/j.nima.2023.168204
  4. Allega, A; Anderson, M.R.; Andringa, S.; Antunes, J.; Askins, M.; Auty, D.J.; Bacon, A.; Barros, N.; Barão, F.; Bayes, R.; Beier, E.W.; Bezerra, T.S.; Bialek, A.; Biller, S.D.; Blucher, E.; Caden, E.; Callaghan, E.J.; Cheng, S.; Chen, M.; Cleveland, B.; Cookman, D.; Corning, J.; Cox, M.A.; et al. (2023). Evidence of Antineutrinos from Distant Reactors Using Pure Water at SNO+. Physical Review Letters, 130(9), Article 091801 https://dx.doi.org/10.1103/physrevlett.130.091801

2022

  1. Allega, A. & Yeh, M. (2022). Improved search for invisible modes of nucleon decay in water with the SNO+ detector. Physical Review D, 105(11) https://dx.doi.org/10.1103/PhysRevD105.112012

2021

  • The PROSPECT Collaboration, “Improved short-baseline neutrino oscillation search and energy spectrum measurement with the PROSPECT experiment at HFIR.” Rev. D 103 (2021) 032001. DOI:10.1103/PhysRevD.103.032001
  • Zi-yi Guo  al.,“Muon flux measurement at China Jinping Underground Laboratory.” Chinese Phys. C 45 (2021) 025001. DOI:10.1088/1674-1137/abccae
  • The Daya Bay and JUNO collaborations, “Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector.” NIMA, 988, 1 (2021) 164823. DOI:10.1016/j.nima.2020.164823
  • Akerib, D. S. et.al., “Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment.” Astroparticle Phys. 125 (2021) 102480. DOI:10.1016/j.astropartphys.2020.102480

2020

  • Hans, S.; Cumming, J. B.; Rosero, R.; Diaz Perez, R.; Camilo Reyes, C.; Gokhale, S. S.;Yeh, M.; Light yield quenching and quenching remediation in liquid scintillator detectors.” JINST 15 (2020) p12020. DOI:10.1088/1748-0221/15/12/P12020
  • The SNO Collaboration, “Search for hep solar neutrinos and the diffuse supernova neutrino background using all three phases of the Sudbury Neutrino Observatory” Phys. Rev. D102 (2020) 6, 062006 DOI:10.1103/PhysRevD.102.062006
  • Caravaca, J; Land, B. J.; Yeh, M.; Gann, G. D. O.; “ Characterization of water-based liquid scintillator for Cherenkov and scintillation separation.” Eur. Phys. J. C. 80, 9 (2020) 67 DOI:10.1140/epjc/s10052-020-8418-4
  • The Daya Bay, MINOS+ Collaborations, “Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments”, Phys. Rev. Lett. 125, (2020) 7, 071801. DOI:10.1103/PhysRevLett.125.071801
  • The SNO+ Collaboration, “Measurement of neutron-proton capture in the SNO+ water phase”, Phys. Rev. C102 (2020) 1, 014002. DOI:10.1103/PhysRevC.102.014002
  • The LUX-ZEPLIN Collaboration, “Projected sensitivity of the LUX-ZEPLIN experiment to the 0 nu beta beta decay of Xe-136.” Phys. Rev. C102 (2020) 1, 014602. DOI:10.1103/PhysRevC.102.014602
  • Park, J. S. et. al., “Performance of PMTs for the JSNS (2) experiment.” JINST 15, (2020) 7, T07003. DOI:10.1088/1748-0221/15/07/T07003
  • Park, J. S. et. al., “The JSNS2data acquisition system” JINST 15 (2020) 9, T09002. DOI:10.1088/1748-0221/15/09/T09002
  • Balantekin, A. B. et al., “Nonfuel antineutrino contributions in the ORNL High Flux Isotope Reactor (HFIR)”, Phys. Rev. C101 1 (2020) 054605. DOI:10.1103/PhysRevC.101.054605
  • Askins, M. et. Al., “Theia: an advanced optical neutrino detector.” Eur. Phys. J. C. 80 5 (2020) 416. DOI:10.1140/epjc/s10052-020-7977-8
  • The LUX-ZEPLIN Collaboration, “Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment”, Phys. Rev. D101 (2020) 5, 052002, DOI:10.1103/PhysRevD.101.052002
  • Akerib, D. S. et. al., “The LUX-ZEPLIN (LZ) experiment. ” NIMA., 953 (2020) 163047. DOI:10.1016/j.nima.2019.163047
  • Akerib, D. S. et.al., “The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs.” Phys. J. C. 80 (2020) 1044. DOI:10.1140/epjc/s10052-020-8420-x
  • Aharmim, B. et. al., “Cosmogenic neutron production at the Sudbury Neutrino Observatory.” Phys. Rev. D100 1(2020) 112005. DOI:10.1103/PhysRevD.100.112005
  • The LUX-ZEPLIN (LZ) Collaboration, “Measurement of the Gamma Ray Background in the Davis Cavern at the Sanford Underground Research Facility”, Phys. 116 (2020) 102391, DOI:10.1016/j.astropartphys.2019.102391.
  • R. Onken, F. Moretti, J. Caravaca, M. Yeh, G. D. Orebi Gann, E. D. Bourret, “Time Response of Water-based Liquid Scintillator from X-ray Excitation”, Mater. Adv. 2020. 1, 71-76, DOI:10.1039/D0MA00055H.

2019

  • The PROSPECT Collaboration, “The PROSPECT Reactor Antineutrino Experiment”, Meth. A922 (2019) 287-309, DOI:10.1016/j.nima.2018.12.079.
  • The Daya Bay collaboration, “A high precision calibration of the nonlinear energy response at Daya Bay”, Meth. A940 (2019) 230-242, DOI:10.1016/j.nima.2019.06.031.
  • Aharmim, B. et al.The SNO Collaboration, “Cosmogenic neutron production at the Sudbury Neutrino Observatory.” Phys. Rev. D 100 (2019) 112005. DOI:10.1103/PhysRevD.100.112005
  • Adey, D. et al., The Daya Bay Collaboration, “Improved measurement of the reactor antineutrino flux at Daya Bay.” Phys. Rev. D. 100 (2019) 052004. DOI:10.1103/PhysRevD.100.052004
  • The Day Bay Collaboration, “Response to Comment on Daya Bay's definition and use of Delta(m^2_ee)”, arXiv:1905.03840 [hep-ex].
  • L. Danielson et al., “Directionally Accelerated Detection of an Unknown Second Reactor with Antineutrinos for Mid-Field Nonproliferation Monitoring”, arXiv:1909.05374 [physics.ins-det].
  • The PROSPECT Collaboration, “The Radioactive Source Calibration System of the PROSPECT Reactor Antineutrino Detector”, Meth. A944 (2019) 162465, DOI:10.1016/j.nima.2019.162465.
  • Bergevin et al., “Applied Antineutrino Physics 2018 Proceedings”,arXiv:1911.06834 [hep-ex].
  • B. Cumming, S. Hans, M. Yeh, “Improving Light Yield Measurements for Low-Yield Scintillators”, Nucl. Instrum. Meth. A925 (2019) 1-5 , DOI:10.1016/j.nima.2019.01.014.
  • The SNO Collaboration, “Measurement of neutron production in atmospheric neutrino interactions at the Sudbury Neutrino Observatory”, D99 (2019) 11, 112007, DOI:10.1103/PhysRevD.99.112007.
  • J. Haselschwardt et al., “A Liquid Scintillation Detector for Radioassay of Gadolinium-Loaded Liquid Scintillator for the LZ Outer Detector”,Nucl. Instrum. Meth. A937 (2019) 148-163, DOI:10.1016/j.nima.2019.05.055.
  • The PROSPECT Collaboration, “A Low Mass Optical Grid for the PROSPECT Reactor Antineutrino Detector”, JINST 14 (2019) 04, P04014, DOI:10.1088/1748-0221/14/04/P04014.
  • The Daya Bay Collaboration, “Extraction of the 235U and 239Pu Antineutrino Spectra at Daya Bay”, Lett. 123 (2019) 11, 111801, DOI:10.1103/PhysRevLett.123.111801.
  • The PROSPECT Collaboration, “Lithium-loaded Liquid Scintillator Production for the PROSPECT experiment”, JINST 14 (2019) 03, P03026, DOI:10.1088/1748-0221/14/03/P03026.
  • The SNO+ Collaboration, “Search for invisible modes of nucleon decay in water with the SNO+ detector”, D99 (2019) 3, 032008, DOI:10.1103/PhysRevD.99.032008.
  • The SNO Collaboration, “Constraints on Neutrino Lifetime from the Sudbury Neutrino Observatory”,   D99 (2019) 3, 032013, DOI:10.1103/PhysRevD.99.032013.
  • Guo, M. Yeh, R. Zhang, D. Cao, M. Qi, Z. Wang, S. Chen,  “Slow Liquid Scintillator Candidates for MeV-scale Neutrino Experiments”,Astropart. Phys. 109 (2019) 33-40, DOI:10.1016/j.astropartphys.2019.02.001.
  • The SNO+ Collaboration, “Measurement of the 8B solar neutrino flux in SNO+ with very low backgrounds”, D99 (2019) 1, 012012, DOI:10.1103/PhysRevD.99.012012.
  • The PROSPECT Collaboration, “Measurement of the Antineutrino Spectrum from 235U Fission at HFIR with PROSPECT”, Lett. 122 (2019) 25, 251801, DOI:10.1103/PhysRevLett.122.251801.

2018

  • The Daya Bay Collaboration, “Cosmogenic neutron production at Daya Bay”, Rev. D97 (2018) 5, 052009, DOI: 10.1103/PhysRevD.97.052009.
  • The Daya Bay Collaboration, “Seasonal Variation of the Underground Cosmic Muon Flux Observed at Daya Bay”, JCAP 01 (2018) 001, DOI: 10.1088/1475-7516/2018/01/001.
  • The PROSPECT Collaboration, “First search for short-baseline neutrino oscillations at HFIR with PROSPECT”, Rev. Lett. 121 (2018) 25, 251802, DOI: 10.1103/PhysRevLett.121.251802.
  • The Daya Bay Collaboration, “Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay”, Rev. Lett. 121 (2018) 24, 241805, DOI: 10.1103/PhysRevLett.121.241805.
  • The Daya Bay Collaboration, “Search for a time-varying electron antineutrino signal at Daya Bay”, Rev. D98, 092013 (2018), DOI: 10.1103/PhysRevD.98.092013.
  • The PROSPECT Collaboration, “Performance of a segmented 6Li-loaded liquid scintillator detector for the PROSPECT experiment”, JINST 13 (2018) 06, P06023, DOI: 10.1088/1748-0221/13/06/P06023.
  • The SNO Collaboration, “Tests of Lorentz invariance at the Sudbury Neutrino Observatory”, Rev. D98 (2018) 11, 112013, DOI: 10.1103/PhysRevD.98.112013.
  • The DUNE Collaboration, “The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module”, arXiv:1807.10340 [physics.ins-det].
  • The DUNE Collaboration, “The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module”, arXiv:1807.10327 [physics.ins-det].
  • The DUNE Collaboration, “The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies”, arXiv:1807.10334 [physics.ins-det].
  • A. Sörensen et al., “Temperature quenching in LAB based liquid scintillator”, Eur. Phys. J. C78, 9 (2018), DOI: 10.1140/epjc/s10052-017-5484-3.

2017

  • S. F. Hicks, J.R. Vanhoy, P.G. Burkett, B.R. Champine, S.J. Etzkorn, P.E. Garrett, S.W. Yates, M. Yeh, “Lifetimes in Te124: Examining critical-point symmetry in the Te nuclei”, Phys. Rev. C95 (2017) 3, 034322, DOI: 10.1103/PhysRevC.95.034322.
  • The Daya Bay Collaboration, Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment”, Rev. D95 (2017) 7, 072006, DOI: 10.1103/PhysRevD.95.072006.
  • B. Abi et al., “The Single-Phase ProtoDUNE Technical Design Report”, arXiv:1706.07081 [physics.ins-det].
  • S. Ajimura et al., “Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC MLF (E56, JSNS2)”, arXiv:1705.08629 [physics.ins-det].
  • F. P. An et al., “Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay”, Phys. Rev. Lett. 118, 251801(2017), DOI: 10.1103/PhysRevLett.118.251801.
  • The LZ Collaboration, “Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches”, Phys. 96 (2017) 1-10, DOI: 10.1016/j.astropartphys.2017.09.002.
  • The SNO Collaboration, “Search for neutron-antineutron oscillations at the Sudbury Neutrino Observatory”, Rev. D96 (2017) 9, 092005, DOI: 10.1103/PhysRevD.96.092005.
  • The Daya Bay Collaboration, “Study of the wave packet treatment of neutrino oscillation at Daya Bay”, Phys. J. C77 (2017) 9, 606, DOI: 10.22323/1.282.1081.
  • The Daya Bay Collaboration, “Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay”, Phys. C41 (2017) 1, 013002, DOI: 10.1088/1674-1137/41/1/013002.
  • The Jinping Collaboration, “Physics prospects of the Jinping neutrino experiment”, Phys. C41 (2017) 2, 023002, DOI: 10.1088/1674-1137/41/2/023002.
  • The Daya Bay Collaboration, “Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay”, Rev. Lett. 118 (2017) 9, 099902, DOI: 10.1103/PhysRevLett.118.099902.
  • J. Caravaca et al., “Experiment to demonstrate separation of Cherenkov and scintillation signals”, Phys. Rev. C95 (2017) 5, 055801, DOI: 10.1103/PhysRevC.95.055801.
  • J. Caravaca et al., “Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators”, Eur. Phys. J. C77 (2017) 12, 811, DOI: 10.1140/epjc/s10052-017-5380-x.
  • B. J. Mount, et at., “LUX-ZEPLIN (LZ) Technical Design Report”, arXiv:1703.09144 [physics.ins-det].
  • The Daya Bay Collaboration, “Recent Results from Daya Bay Reactor Neutrino Experiment”, Part. Phy. Volumes 285–286, April–May 2017, Pages 32-37, DOI: 10.1016/j.nuclphysbps.2017.03.007.

2016

  • C. Buck & M. Yeh, “Metal-loaded organic scintillators for neutrino physics”, J. Phys. G43 (2016) 9, 093001, DOI: 10.1088/0954-3899/43/9/093001.
  • The Daya Bay Collaboration, “Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment”, Rev. Lett. 117 (2016) 15, 151802, DOI: 10.1103/PhysRevLett.117.151802.
  • The SNO+ Collaboration, “Current Status and Future Prospects of the SNO+ Experiment”, High Energy Phys. 2016 (2016) 6194250, DOI: 10.1155/2016/6194250.
  • M. Li, Z. Guo, M. Yeh, Z. Wang, S. Chen, “Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene”, Nucl. Instrum. Meth. A830 (2016) 303-308, DOI: 10.1016/j.nima.2016.05.132.
  • The PROSPECT Collaboration, “The PROSPECT Physics Program”, Phys. G43 (2016) 11, 113001, DOI: 10.1088/0954-3899/43/11/113001
  • The Daya Bay Collaboration, “Latest progress from the Daya Bay reactor neutrino experiment”, Phys. Conf. Ser. 718 (2016) 6, 062069, DOI: 10.1088/1742-6596/718/6/062069.
  • The Daya Bay and MINOS Collaborations, “Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments”, Rev. Lett. 117 (2016) 15, 151801, DOI: 10.1103/PhysRevLett.117.151801, 10.1103/PhysRevLett.117.209901.
  • The PROSPECT Collaboration, “Background Radiation Measurements at High Power Research Reactors”, Instrum. Meth. A806 (2016) 401-419, DOI: 10.1016/j.nima.2015.10.023.
  • M. Harada et al., “Status Report (22th J-PARC PAC): Searching for a Sterile Neutrino at J-PARC MLF (E56, JSNS2)”, arXiv:1610.08186 [physics.ins-det].
  • J. F. Beacom et al., “Letter of Intent: Jinping Neutrino Experiment”, arXiv:1602.01733 [physics.ins-det].
  • R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects”, arXiv:1601.05471 [physics.ins-det].
  • R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF”, arXiv:1601.02984 [physics.ins-det].
  • M. Harada et al., “Status Report for the 21th J-PARC PAC : Searching for a Sterile Neutrino at J-PARC MLF (J-PARC E56, JSNS2)”, arXiv:1601.01046 [physics.ins-det].
  • The Daya Bay Collaboration, “The Detector System of The Daya Bay Reactor Neutrino Experiment”, Instrum. Meth. A811 (2016) 133-161, DOI: 10.1016/j.nima.2015.11.144.
  • M. Li et al., “Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene”, Nucl. Instrum. Meth. A830 (2016) 303-308, DOI: 10.1016/j.nima.2016.05.132.
  • B. von Krosigk et al., “Measurement of α-particle quenching in LAB based scintillator in independent small-scale experiments”, Eur. Phys. J. C76 (2016) 3, 109, DOI: 10.1140/epjc/s10052-016-3959-2.
  • The Aberdeen Tunnel Experiment Collaboration, “Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory”, Rev. D93 (2016) 7, 072005, DOI: 10.1103/PhysRevD.93.072005, 10.1103/PhysRevD.94.099906.

2015

  • L. J. Bignell, M. V. Diwan, S. Hans, D. E. Jaffe, R. Rosero, S. Vigdor, B. Viren, E. Worcester, M. Yeh, C. Zhang, “Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator”, JINST 10 (2015) 10, P10027, DOI: 10.1088/1748-0221/10/10/P10027.
  • L. J. Bignell, D. Beznosko, M. V. Diwan, S. Hans, D. E. Jaffe, S. Kettell, R. Rosero, H. W. Themann, B. Viren, E. Worcester, M. Yeh, C. Zhang, “Characterization and Modeling of a Water-based Liquid Scintillator”, JINST 10 (2015) 12, P12009, DOI: 10.1088/1748-0221/10/12/P12009.
  • R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF”, arXiv:1512.06148 [physics.ins-det].
  • The PROSPECT Collaboration, “Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment”, JINST 10 (2015) 11, P11004, DOI: 10.1088/1748-0221/10/11/P11004.
  • M. Harada et al., “Status Report for the 20th J-PARC PAC: A Search for Sterile Neutrino at J-PARC MLF (J-PARC E56, JSNS2)”, arXiv:1507.07076 [physics.ins-det].
  • M. Harada et al., “Status Report (BKG measurement): A Search for Sterile Neutrino at J-PARC MLF”, arXiv:1502.02255 [physics.ins-det].
  • M. Askins et al., “The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A Water Cherenkov Monitor for Antineutrinos”, arXiv:1502.01132 [physics.ins-det].
  • R. Rosero & M. Yeh, “Radiopure metal-loaded liquid scintillator”, AIP Conf. Proc. 1672 (2015) 1, 080002, DOI: 10.1063/1.4927997.
  • The Daya Bay Collaboration, “New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay”, Rev. Lett. 115 (2015) 11, 111802, DOI: 10.1103/PhysRevLett.115.111802.
  • C. Adams et al., “The Intermediate Neutrino Program”, arXiv:1503.06637 [hep-ex].
  • S. Hans, R. Rosero, M. Yeh et al., “Purification of telluric acid for SNO+ neutrinoless double-beta decay search”, Nucl. Instrum. Meth. A795 (2015) 132-139, DOI: 10.1016/j.nima.2015.05.045.
  • The Daya Bay Collaboration, “The muon system of the Daya Bay Reactor antineutrino experiment”, Instrum. Meth. A773 (2015) 8-20, DOI: 10.1016/j.nima.2014.09.070.
  • The LZ Collaboration, “LUX-ZEPLIN (LZ) Conceptual Design Report”, arXiv:1509.02910 [physics.ins-det].
  • J. Wilhelmi et al., “The Water Purification System for the Daya Bay Reactor Neutrino Experiment”, Journal of Water Process Engineering, Vol 5, (2015), 127–135, DOI: 10.1016/j.jwpe.2015.02.003.

2014

  • The Daya Bay Collaboration, “Search for a Light Sterile Neutrino at Daya Bay”, Phys. Rev. Lett. 113 (2014) 141802, DOI: 10.1103/PhysRevLett.113.141802.
  • The Daya Bay Collaboration, “Independent measurement of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay”, Rev. D90 (2014) 7, 071101, DOI: 10.1103/PhysRevD.90.071101.
  • W. Beriguete et al., “Production of a gadolinium-loaded liquid scintillator for the Daya Bay reactor neutrino experiment”, Nucl. Instrum. Meth. A763 (2014) 82-88, DOI: 10.1016/j.nima.2014.05.119.
  • J. Alonso et al., “Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator”, arXiv:1409.5864 [physics.ins-det].
  • The ANNIE Collaboration, “Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)”, arXiv:1402.6411 [physics.ins-det].
  • The Daya Bay Collaboration, “Results from the Daya Bay Reactor Neutrino Experiment”, Phys. B Proc. Suppl. 246-247 (2014) 18-22, DOI: 10.1016/j.nuclphysbps.2013.10.059.
  • The Daya Bay Collaboration, “Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay”, Rev. Lett. 112 (2014) 061801, doi:0.1103/PhysRevLett.112.061801.
  • M. Demarteau et al., “Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 8: Instrumentation Frontier”, arXiv:1401.6116 [hep-ex].
  • P. DeVore et al., “Light-weight Flexible Magnetic Shields For Large-Aperture Photomultiplier Tubes”, Nucl. Instrum. Meth. A737 (2014) 222-228, DOI: 10.1016/j.nima.2013.11.024.
  • The SNO Collaboration, “A Search for Astrophysical Burst Signals at the Sudbury Neutrino Observatory”, Phys. 55 (2014), 1-7, DOI: 10.1016/j.astropartphys.2013.12.004.
  • S. Perasso et al., “Measurement of ortho-Positronium Properties in Liquid Scintillators”, JINST 9 (2014) C03028, DOI: 10.1088/1748-0221/9/03/C03028.

2013

  • The JSNS2 Collaboration, “Proposal: A Search for Sterile Neutrino at J-PARC Materials and Life Science Experimental Facility”, arXiv:1310.1437 [physics.ins-det].
  • The PROSPECT Collaboration, “PROSPECT - A Precision Reactor Oscillation and Spectrum Experiment at Short Baselines”, arXiv:1309.7647 [physics.ins-det].
  • S. C. Blyth et al., “An apparatus for studying spallation neutrons in the Aberdeen Tunnel laboratory”, Nucl. Instrum. Meth. A723 (2013) 67-82, DOI: 10.1016/j.nima.2013.04.035.
  • G. Consolati et al., “Characterization of positronium properties in doped liquid scintillators”, Phys. Rev. C88 (2013) 065502, doi:10.1103/PhysRevC.88.065502.
  • The LBNE Collaboration, “The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe”, arXiv:1307.7335 [hep-ex].
  • A. B. Balantekin et al., “Neutrino mass hierarchy determination and other physics potential of medium-baseline reactor neutrino oscillation experiments”, arXiv:1307.7419 [hep-ex].
  • The OscSNS Collaboration, “The OscSNS White Paper”, arXiv:1307.7097 [physics.ins-det].
  • The Daya Bay Collaboration, “Improved Measurement of Electron Antineutrino Disappearance at Daya Bay”, Phys. C37 (2013) 011001, doi:10.1088/1674-1137/37/1/011001.
  • The SNO Collaboration, “Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory”, Rev. C 88 (2013) 025501, doi:10.1103/PhysRevC.88.025501.
  • The SNO Collaboration, “Measurement of the νe and Total 8B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase-III Data Set”, Rev. C87 (2013) 1, 015502, DOI: 10.1103/PhysRevC.87.015502.
  • The Aberdeen Tunnel Collaboration, An apparatus for studying spallation neutrons in the Aberdeen Tunnel laboratory, Nucl. Instr. Meth. A723 (2013) 67-82. doi:10.1016/j.nima.2013.04.035
  • S. Perasso, G. Consolati, D. Franco, S. Hans, C. Jollet, A. Meregaglia, A. Tonazzo, M. Yeh, Measurement of ortho-Positronium Properties in Liquid Scintillators, Proceedings of the Low Radioactivity Techniques Workshop at LNGS, Assergi (AQ), Italy, April 10-12, 2013: arXiv:1306.6001v1.

2012

  • J. L. Hewett et al., “Fundamental Physics at the Intensity Frontier”, arXiv:1205.2671 [hep-ex].
  • The Daya Bay Collaboration, “Observation of electron-antineutrino disappearance at Daya Bay”, Rev. Lett. 108 (2012) 171803, doi:10.1103/PhysRevLett.108.171803.
  • K. N. Abazajian et al., “Light Sterile Neutrinos: A White Paper”, arXiv:1204.5379 [hep-ph].
  • The Daya Bay Collaboration, “A side-by-side comparison of Daya Bay antineutrino detectors” Instrum. Meth. A685 (2012) 78-97, doi:10.1016/j.nima.2012.05.030.
  • H. R. Band et al., “Acrylic Target Vessels for a High-Precision Measurement of theta13 with the Daya Bay Antineutrino Detectors”, JINST 7 (2012) P06004, doi:10.1088/1748-0221/7/06/P06004.

2011

  • The LBNE Collaboration, “The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups”, arXiv:1110.6249 [hep-ex].
  • J. Goett, J. Napolitano, M. Yeh, R. Hahn, J.B. Cumming et al., “Optical attenuation measurements in metal-loaded liquid scintillators with a long-pathlength photometer”, Nucl. Instrum. Meth. A637 (2011) 47-52, doi:10.1016/j.nima.2011.02.051.
  • M. Yeh, S. Hans, W. Beriguete, R. Rosero, L. Hu et al., “A new water-based liquid scintillator and potential application”, Nucl. Instrum. Meth. A660 (2011) 51-56, doi:10.1016/j.nima.2011.08.040.
  • Z. Chang et al., “Indium-loaded liquid scintillator for solar neutrino spectroscopy”, Nucl. Phys. B Proc. Suppl. 221 (2011) 337, DOI: 10.1016/j.nuclphysbps.2011.09.036.
  • The SNO Collaboration, “Low Multiplicity Burst Search at the Sudbury Neutrino Observatory”, J. 728 (2011) 83, DOI: 10.1088/0004-637X/728/2/83.
  • PhysRevC.61.034307.

2010

  • M. Yeh, J. Cumming, S. Hans, R.L. Hahn, Purification of lanthanides for large neutrino detectors: Thorium removal from gadolinium chloride, Nucl. Instr. Meth. A 618 (2010) 124–130 doi:10.1016/j.nima.2010.02.124
  • The SNO Collaboration, Searches for High Frequency Variations in the 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory, Astrophys. J. 710:540-548 (2010)
  • The SNO Collaboration, Low-energy-threshold analysis of the Phase I and Phase II data sets of the Sudbury Neutrino Observatory, Phys. Rev. C, 81 (05), 2010. doi:10.1103/PhysRevC.81.055504