BNL Home
MSEE Home

Providing a fundamental understanding of molten salt bulk and interfacial chemistry underpinning molten salt nuclear reactor technology

Publications

  • Karunaratne WV, Sharma S, Ocko BM, Margulis CJ (2021) Structure of Molten Alkali Chlorides at Charged Interfaces and the Prediction and Interpretation of Their X-ray Reflectivity. The Journal of Physical Chemistry C 125:25227–25242. https://doi.org/10.1021/acs.jpcc.1c07135
  • Bawane K, Liu X, Gakhar R, et al (2022) Visualizing time-dependent microstructural and chemical evolution during molten salt corrosion of Ni-20Cr model alloy using correlative quasi in situ TEM and in situ synchrotron X-ray nano-tomography. Corrosion Science 195:109962. https://doi.org/10.1016/j.corsci.2021.109962
  • Browning JF, Seo J, Wenzel JF, et al (2021) A high temperature cell for investigating interfacial structure on the molecular scale in molten salt/alloy systems. Review of Scientific Instruments 92:123903. https://doi.org/10.1063/5.0065860
  • Iwamatsu K, Horne GP, Gakhar R, et al (2022) Radiation-induced reaction kinetics of Zn2+ with eS− and Cl2˙− in Molten LiCl–KCl eutectic at 400–600 °C. Physical Chemistry Chemical Physics 24:25088–25098. https://doi.org/10.1039/d2cp01194h
  • Ramos-Ballesteros A, Gakhar R, Woods ME, et al (2022) Radiation-Induced Long-Lived Transients and Metal Particle Formation in Solid KCl–MgCl2 Mixtures. The Journal of Physical Chemistry C 126:9820–9830. https://doi.org/10.1021/acs.jpcc.2c01725
  • Shinohara Y, Ivanov AS, Maltsev D, et al (2022) Real-Space Local Dynamics of Molten Inorganic Salts Using Van Hove Correlation Function. The Journal of Physical Chemistry Letters 13:5956–5962. https://doi.org/10.1021/acs.jpclett.2c01230< a target="_blank" href="https://doi.org/10.1021/acs.jpclett.2c01230" title="View Publication">
  • Sure J, Gill S k, Wang Y, et al (2022) Electrochemical noise studies on localized corrosion of Ni and Ni-20Cr in molten ZnCl2. Electrochimica Acta 431:141126. https://doi.org/10.1016/j.electacta.2022.141126
  • Emerson MS, Sharma S, Roy S, et al (2022) Complete Description of the LaCl3–NaCl Melt Structure and the Concept of a Spacer Salt That Causes Structural Heterogeneity. Journal of the American Chemical Society 144:21751–21762. https://doi.org/10.1021/jacs.2c09987
  • Yu L-C, Clark C, Liu X, et al (2022) Evolution of micro-pores in Ni–Cr alloys via molten salt dealloying. Scientific Reports 12:. https://doi.org/10.1038/s41598-022-20286-5
  • Liu X, Ronne A, Yu L-C, et al (2023) Heterogeneous 3D Morphological Evolution of Ni Microparticles in Molten Salts: Visualized by Operando Synchrotron X-ray Nano-tomography. JOM 75:1006–1018. https://doi.org/10.1007/s11837-023-05715-8
  • Liu X, Bawane K, Zheng X, et al (2023) Temperature-Dependent Morphological Evolution during Corrosion of the Ni-20Cr Alloy in Molten Salt Revealed by Multiscale Imaging. ACS Applied Materials & Interfaces 15:13772–13782. https://doi.org/10.1021/acsami.2c23207
  • Roy S, Liu Y, Topsakal M, Dias E, Gakhar R, Phillips WC, Wishart JF, Leshchev D, Halstenberg P, Dai S, Gill SK, Frenkel AI, Bryantsev VS (2021) A Holistic Approach for Elucidating Local Structure, Dynamics, and Speciation in Molten Salts with High Structural Disorder. Journal of the American Chemical Society 143:15298–15308. doi: 10.1021/jacs.1c06742
  • DeFever RS, Maginn EJ (2021) Computing the Liquidus of Binary Monatomic Salt Mixtures with Direct Simulation and Alchemical Free Energy Methods. The Journal of Physical Chemistry A 125:8498–8513. doi: 10.1021/acs.jpca.1c06107
  • Sharma S, Ivanov AS, Margulis CJ (2021) A Brief Guide to the Structure of High-Temperature Molten Salts and Key Aspects Making Them Different from Their Low-Temperature Relatives, the Ionic Liquids. The Journal of Physical Chemistry B 125:6359–6372. doi: 10.1021/acs.jpcb.1c01065
  • Roy S, Sharma S, Karunaratne WV, Wu F, Gakhar R, Maltsev DS, Halstenberg P, Abeykoon M, Gill SK, Zhang Y, Mahurin SM, Dai S, Bryantsev VS, Margulis CJ, Ivanov AS (2021) X-ray scattering reveals ion clustering of dilute chromium species in molten chloride medium. Chemical Science 12:8026–8035. doi: 10.1039/d1sc01224j
  • Roy S, Brehm M, Sharma S, Wu F, Maltsev DS, Halstenberg P, Gallington LC, Mahurin SM, Dai S, Ivanov AS, Margulis CJ, Bryantsev VS (2021) Unraveling Local Structure of Molten Salts via X-ray Scattering, Raman Spectroscopy, and Ab Initio Molecular Dynamics. The Journal of Physical Chemistry B 125:5971–5982. doi: 10.1021/acs.jpcb.1c03786
  • Ramos-Ballesteros A, Gakhar R, Horne GP, Iwamatsu K, Wishart JF, Pimblott SM, LaVerne JA (2021) Gamma radiation-induced defects in KCl, MgCl2, and ZnCl2 salts at room temperature. Physical Chemistry Chemical Physics 23:10384–10394. doi: 10.1039/d1cp00520k
  • Liu X, Ronne A, Yu L-C, Liu Y, Ge M, Lin C-H, Layne B, Halstenberg P, Maltsev DS, Ivanov AS, Antonelli S, Dai S, Lee W-K, Mahurin SM, Frenkel AI, Wishart JF, Xiao X, Chen-Wiegart YK (2021) Formation of three-dimensional bicontinuous structures via molten salt dealloying studied in real-time by in situ synchrotron X-ray nano-tomography. Nature Communications. doi: 10.1038/s41467-021-23598-8
  • Gill SK, Sure J, Wang Y, Layne B, He L, Mahurin S, Wishart JF, Sasaki K (2021) Investigating corrosion behavior of Ni and Ni-20Cr in molten ZnCl2. Corrosion Science 179:109105. doi: 10.1016/j.corsci.2020.109105
  • Dias ET, Gill SK, Liu Y, Halstenberg P, Dai S, Huang J, Mausz J, Gakhar R, Phillips WC, Mahurin S, Pimblott SM, Wishart JF, Frenkel AI (2020) Radiation-Assisted Formation of Metal Nanoparticles in Molten Salts. The Journal of Physical Chemistry Letters 12:157–164. doi: 10.1021/acs.jpclett.0c03231
  • Bawane K, Manganaris P, Wang Y, Sure J, Ronne A, Halstenberg P, Dai S, Gill SK, Sasaki K, Chen-Wiegart YK, Gakhar R, Mahurin S, Pimblott SM, Wishart JF, He L (2021) Determining oxidation states of transition metals in molten salt corrosion using electron energy loss spectroscopy. Scripta Materialia 197:113790. doi: 10.1016/j.scriptamat.2021.113790
  • Wu F, Sharma S, Roy S, Halstenberg P, Gallington LC, Mahurin SM, Dai S, Bryantsev VS, Ivanov AS, Margulis CJ (2020) Temperature Dependence of Short and Intermediate Range Order in Molten MgCl2 and Its Mixture with KCl. The Journal of Physical Chemistry B 124:2892–2899. doi: 10.1021/acs.jpcb.0c00745
  • Wang H, DeFever RS, Zhang Y, Wu F, Roy S, Bryantsev VS, Margulis CJ, Maginn EJ (2020) Comparison of fixed charge and polarizable models for predicting the structural, thermodynamic, and transport properties of molten alkali chlorides. The Journal of Chemical Physics 153:214502. doi: 10.1063/5.0023225
  • Sharma S, Emerson MS, Wu F, Wang H, Maginn EJ, Margulis CJ (2020) SEM-Drude Model for the Accurate and Efficient Simulation of MgCl2–KCl Mixtures in the Condensed Phase. The Journal of Physical Chemistry A 124:7832–7842. doi: 10.1021/acs.jpca.0c06721
  • Roy S, Wu F, Wang H, Ivanov AS, Sharma S, Halstenberg P, Gill SK, Milinda Abeykoon AM, Kwon G, Topsakal M, Layne B, Sasaki K, Zhang Y, Mahurin SM, Dai S, Margulis CJ, Maginn EJ, Bryantsev VS (2020) Structure and dynamics of the molten alkali-chloride salts from an X-ray, simulation, and rate theory perspective. Physical Chemistry Chemical Physics 22:22900–22917. doi: 10.1039/d0cp03672b
  • Ronne A, He L, Dolzhnikov D, Xie Y, Ge M, Halstenberg P, Wang Y, Manard BT, Xiao X, Lee W-K, Sasaki K, Dai S, Mahurin SM, Chen-Wiegart YK (2020) Revealing 3D Morphological and Chemical Evolution Mechanisms of Metals in Molten Salt by Multimodal Microscopy. ACS Applied Materials & Interfaces 12:17321–17333. doi: 10.1021/acsami.9b19099
  • Phillips WC, Gakhar R, Horne GP, Layne B, Iwamatsu K, Ramos-Ballesteros A, Shaltry MR, LaVerne JA, Pimblott SM, Wishart JF (2020) Design and performance of high-temperature furnace and cell holder for in situ spectroscopic, electrochemical, and radiolytic investigations of molten salts. Review of Scientific Instruments 91:083105. doi: 10.1063/1.5140463
  • Halstenberg PW, Maltsev D, Nguyen D, Kim E, Dai S (2020) Mechanochemical Synthesis of High-Purity Anhydrous Binary Alkali and Alkaline Earth Chloride Mixtures. Industrial & Engineering Chemistry Research 59:19884–19889. doi: 10.1021/acs.iecr.0c04247
  • Gill SK, Huang J, Mausz J, Gakhar R, Roy S, Vila F, Topsakal M, Phillips WC, Layne B, Mahurin S, Halstenberg P, Dai S, Wishart JF, Bryantsev VS, Frenkel AI (2020) Connections between the Speciation and Solubility of Ni(II) and Co(II) in Molten ZnCl2. The Journal of Physical Chemistry B 124:1253–1258. doi: 10.1021/acs.jpcb.0c00195
  • DeFever RS, Wang H, Zhang Y, Maginn EJ (2020) Melting points of alkali chlorides evaluated for a polarizable and non-polarizable model. The Journal of Chemical Physics 153:011101. doi: 10.1063/5.0012253
  • Antonelli S, Ronne A, Han I, Ge M, Layne B, Shahani AJ, Iwamatsu K, Wishart JF, Hulbert SL, Lee W-K, Chen-Wiegart YK, Xiao X (2020) Versatile compact heater design for in situ nano-tomography by transmission X-ray microscopy. Journal of Synchrotron Radiation 27:746–752. doi: 10.1107/s1600577520004567
  • Wu F, Roy S, Ivanov AS, Gill SK, Topsakal M, Dooryhee E, Abeykoon M, Kwon G, Gallington LC, Halstenberg P, Layne B, Ishii Y, Mahurin SM, Dai S, Bryantsev VS, Margulis CJ (2019) Elucidating Ionic Correlations Beyond Simple Charge Alternation in Molten MgCl2–KCl Mixtures. The Journal of Physical Chemistry Letters 10:7603–7610. doi: 10.1021/acs.jpclett.9b02845
  • Kurley JM, Halstenberg PW, McAlister A, Raiman S, Dai S, Mayes RT (2019) Enabling chloride salts for thermal energy storage: implications of salt purity. RSC Advances 9:25602–25608. doi: 10.1039/c9ra03133b