General Lab Information

Computation and Data-Driven Discovery (C3D)

Data-Intensive Research Programs

  • physics image


    As the sole Tier-1 computing facility in the United States for the Large Hadron Collider's ATLAS experiment—and the largest ATLAS computing center worldwide—Brookhaven's RHIC and ATLAS Computing Facility provides a large portion of the overall computing resources for U.S. collaborators and serves as the central U.S. distribution hub for ATLAS experimental data.

  • KBase image


    A systems biology knowledgebase known as KBase seeks to integrate and make broadly accessible everything we know or can learn about plants and microbes. Kbase will be a unique resource, bringing together multiple research communities and empowering them with computational tools to address fundamental biological questions.

  • smart grid image

    Smart Grid

    Brookhaven is using high-performance computing (HPC) methods to assess electrical grid planning and performance using the power industry's existing software tools.

  • photon sciences image

    Photon Sciences

    New detector technology planned for NSLS-II requires new computing approaches to experiment control, data management, data analysis workflow, and metadata handling with high performance on data storage and retrieval, as well as visualization.

  • nanoscience image


    The Center for Functional Nanomaterials Computation Facility and Theory Group provides multi-purpose high-performance computing for internal projects. Its resources include 2,200 computing cores, supported by high-speed networking to facilitate intensive, parallel computing as well as data storage.

  • NNDC

    National Nuclear Data Center

    The National Nuclear Data Center collects experimental information on nuclear structure and nuclear reactions, evaluates them, maintains nuclear databases, and uses modern information technology to disseminate the results.

  • Data Mgmt.

    Environmental Data Mgmt.

    Brookhaven's Environmental Sciences Department Environmental Data Management Group created and manages an External Data Center for the Department of Energy's Atmospheric Radiation Measurement Climate Research Facility.

  • Lattice QCD image

    Lattice QCD

    Lattice Quantum Chromodynamics (Lattice QCD) simulates the interaction between quarks and gluons using Monte Carlo methods based on the theory of Quantum Chromodynamics. Lattice QCD has been successfully applied to study the QCD phase transition, CP violation, hadron structure and various other important topics in theoretical nuclear and high energy physics.

Mission Statement

CSI’s Computation and Data Driven Discovery (C3D) Division addresses the challenges and requirements of science and engineering applications that demand large-scale and innovative computing solutions.

About C3D

C3D is the CSI gateway for expertise in high-performance workflows, distributed computing technologies, and FAIR (Findability, Accessibility, Interoperability, and Reusability) data. C3D integrates high-performance computing, machine learning, and streaming analytics, and translates them into reproducible science and scientific discovery. C3D conducts research, develops solutions, and provides expertise in workflows, scalable software, and analytics to address the challenges and requirements of science and engineering applications that demand large-scale, innovative solutions. C3D specializes in distributed computing research, software systems that support streaming and real-time analytics, and reproducibility. The team’s work includes performing advanced research into extreme-scale and extensible workflow systems, transparent and reproducible artificial intelligence systems in science, and real-time data analytics with a focus on explainability. Contact any C3D member for additional information and collaboration opportunities.

  • Shantenu Jha
    Shantenu Jha

    Chair, Computation and Data-Driven Discovery; Interim Chair, Computer Science & Applied Mathematics

    (631) 344-4780,

Group Projects

CSI’s role in this project is the development of Chimbuko, the first online performance analysis tool for exascale applications and workflows. The Chimbuko framework captures, analyzes, and visualizes performance metrics for complex scientific workflows and relates these metrics to the context of their execution (provenance) on extreme-scale machines.

ExaWorks brings together a multi-lab team within the DOE HPC software ecosystem to promote integration of existing middleware tools and innovation within their aggregated boundaries. ExaWorks’ Brookhaven Lab team contributes to the Portable Submission Interface for Jobs (PSI/J) and the Software Development Kit (SDK).

This project is building on advances in artificial intelligence; high-throughput experimental technologies; and multiscale modeling and simulation to advance scientific understanding of the molecular and cellular processes involved in low dose radiation exposure and cancer risk, accelerate discovery, and connect insights across scales.

Understanding the impact of low doses of radiation on biological systems presents an intricate challenge. There are promising signs that this problem is amenable to investigation via artificial intelligence and machine learning (AI/ML). RadBio’s primary aim is to assess the potential of AI/ML in advancing our understanding of low-dose radiation biology.

This project is an important first step in making high-performance computing and AI-enabled workflow applications easily reproducible. Reproducibility, a core tenant of scientific discovery, will support the widespread use of AI applications and workflows at scale in the broader science community, engendering trust in their results.

The Center for Sustaining Workflows and Application Services (SWAS) brings together academia, national laboratories, and industry to create a sustainable software ecosystem supporting the myriad software and services used in workflows, as well as the workflow orchestration software itself.