Student Opportunities
Brookhaven National Laboratory is committed to supporting education and developing the next generation of scientists and engineers in a variety of fields. Brookhaven offers a number of opportunities in the Nuclear Security and Safeguards field.
BNL hosted a symposium on April 7, 2021, for students and faculty associated with the Enabling Technologies and Innovation Consortium and the Monitoring Technologies and Verification Consortium to introduce BNL research activities related to defense nuclear nonproliferation for the purpose of forming research collaborations. For those who could not attend, the presentations are provided here. Students and/or faculty wishing to form collaborations should contact Giuseppe Camarda.
- From Concept to Field Deployment of Advanced Instrumentation for National Security – Gabriella Carini
- Plant Spies: Using foliar messages to remotely detect tunneling – Shawn P. Serbin
- Hidden Network Monitoring – Michael DePhillips
- Nuclear data for γ’s and ⊽e’s David Brown
- Defense Nuclear Nonproliferation at Brookhaven National Laboratory – Susan Pepper
- Neutrino Detection with Liquid Scintillator Detectors – Minfang Yeh
- Detection of Neutrinos from Nuclear Reactors and Other Sources. – Milind Diwan
"Deterring Proliferation: The Importance of the IAEA"
This textbook is an excellent resource for students and others interested in learning about international safeguards in general or looking up specific topics. It is available for download free of charge.
NNSA Graduate Fellowship Program (NGFP)
The National Nuclear Security Administration (NNSA) Graduate Fellowship Program (NGFP) identifies and develops the next generation of exceptional national security leaders to achieve the NNSA mission: Strengthening our nation through nuclear security. NGFP is administered for NNSA by PNNL only. However, many current and previous NGFP-ers have been BNL employees, interns or NNSS students. BNL has been a successful conduit into, and landing pad after, the program. (Dan Johnson, Katherine Bachner and Dawn Verdugo all came to BNL after NGFP; Sidra Zia and Jack Dishner both did NGFP after internships or employment at BNL's NNS Department; BNL also we have had several NNSS students go on to successfully obtain slots in NGFP, often with BNL letters of recommendation.).
MTV Consortium
The Consortium for Monitoring, Technology, and Verification's (MTV) mission is to develop new technologies that detect and deter nuclear proliferation activities and to train the next generation of nuclear professionals. Thrust Areas include:
- Fundamentals of nuclear and particle physics. Contact: Milind Diwan
- Signals and source terms for nuclear nonproliferation. Contact Giuseppe Camarda
- Nuclear explosion monitoring. Contact Giuseppe Camarda
- Cross-cutting areas of MTV will include: (1) modeling and simulation, (2) nuclear policy, and (3) education and outreach. Contact Giuseppe Camarda
- MTV US/UK University Collaboration Travel Support Contact Giuseppe Camarda
ETI Consortium
The core mission of the Consortium for Enabling Technologies and Innovation (ETI) is to direct the multidisciplinary research and innovation that enable the technologies to train the next-generation of human capital, and to bridge the gap between the university basic research and NNSA national laboratories’ mission-specific applications. Thrust Areas include:
- Computer & Engineering Sciences for Nonproliferation. Contact Michael DePhillips
- Advanced Manufacturing for Nonproliferation. Contact: Milind Diwan
- Novel Instrumentation for Nuclear Fuel Cycle Monitoring. Contact Biays Bowerman or Shawn Serbin (focus: biota)
Nuclear and Radiochemistry Summer School for undergraduates
The program consists of an undergraduate course with lectures on the fundamentals of nuclear science, radiochemistry, and their applications in related fields. Laboratory exercises introduce state-of-the-art instrumentation and technology used in basic and applied nuclear science. Current stipend levels are $4000 for the 6-week program.
Nonproliferation and International Nuclear Safeguards in a Changing World
This summer course, which runs from June 24-28, 2024, is designed to give students a sound understanding of the framework created by the international community to address the threats of nuclear proliferation and nuclear terrorism. The focus is on the central element of this regime, the Nuclear Non-Proliferation Treaty (NPT) and its verification mechanism, the IAEA safeguards system.
Alabama A&M University Scholarly Partnership in Nuclear Security (SPINS) Consortium
The vision of the Scholarly Partnership in Nuclear Security (SPINS) consortium is to enhance the development of the next-generation technical workforce for the National Nuclear Security Administration (NNSA) through active-learning-based education and collaborative state-of-the-art research in nuclear security, radiation detection systems, and nuclear nonproliferation that engage and broaden the participation of underrepresented minority men and women. The SPINS consortium is designed as a sustainable pipeline to: 1) enhance Minority Serving Institution (MSI) Science, Technology, Engineering and Mathematics (STEM) capacity and experience in the areas of Nuclear Security, Engineering of Radiation Detection Systems, and Nuclear Nonproliferation, 2) increase the technical engagements of MSI faculty and students in research, training, and professional development activities at DOE/NNSA facilities, and 3) increase the number of minority students graduating in STEM degrees and joining the DOE/NNSA workforce. SPINS is a consortium of three MSIs and three Department of Energy (DOE)/NNSA labs as follows.
The three MSIs include:
- Alabama A&M University – Historic Black Colleges and Universities (HBCU) MSI category.
- Navajo Technical University – Tribal Colleges and Universities (TCU) MSI category.
- University of Puerto Rico at Rio Piedras –Hispanic Serving Institutions (HIS) MSI category.
The three DOE/NNSA labs are:
- Savannah River National Laboratory (SRNL).
- Brookhaven National Laboratory (BNL).
- Los Alamos National Laboratory (LANL).
The pipeline starts with outreach activities for high schools and two-year colleges, followed by NNSA-based skillset and professional development of undergraduate and graduate students, up to employment in DOE/NNSA facilities and related industries. The research activities will use computer modeling, nanotechnology-based engineering and cutting-edge electronics designs to advance radiological and nuclear detection at room temperature and with widespread remote deployment, with efforts towards research and development (R&D) products and possible tech transfers in advanced drone-based remote monitoring systems for nuclear security application.
More information about the NNSA Minority Serving Institution Partnership Program (MSIPP) can be found here.
DNN R&D (NA-22) funded projects
Contact Giuseppe Camarda for more information.
NBSR M3 – Reactor Conversion Program
TThe NBSR Reactor of the National Institute of Standards and Technology (NIST), based in Gaithersburg, Maryland, is a research reactor designed for neutron beam science and uses Highly Enriched Uranium (HEU) fuel (U3O8 dispersed in Al). The NBSR HEU fuel elements each have 34 plates in two axial segments of 17 plates each. Each plate is slightly curved. The number of elements loaded on the core grid plate is flexible in principle, but fixed by experimental mission needs. Thus, there are 30 fuel elements at various burnup states in the core. Each fuel element is shuffled, rotated during its lifetime in order to utilize the uranium in the elements and to control power peaking. The scope of the project includes all activities necessary to convert the NBSR reactor from HEU fuel to LEU fuel. The primary focus of these activities in FY18 are:
- Completion of the NBSR Transition Plan Analysis
- NBSR Preliminary Design Verification (NQA-1)
- NBSR Design Parameters Update
- NBSR Release Spec and Drawings for Initial Element Trials
- NBSR Reactor Conversion TFR
AIT - Water-based Liquid Scintillator (WbLS) (Active)
Water-based liquid scintillator (WbLS) is a new generation of scintillation liquid developed for largescale scintillator detectors in application for a variety of nuclear detections. The principal of water-based liquid scintillator is to bridge organic scintillating materials and water using surfactants to form scintillation solutions ranging from almost pure water to almost pure organic scintillator dependent on the detector needs. In addition to co-mix scintillator and water over a wide range of compositions, WbLS also provides a new approach to load inorganic metallic ions from aqueous solution directly into any organic scintillators to enhance detector sensitivity and expand physics reach for a wide range of particle interactions with good photon yield and high optical transparency. This project will make use of a test-bed, the Advanced Instrumentation Testbed (AIT), to explore the practice of water-based liquid scintillator as an antineutrino detection medium, and to permit investigation of advanced antineutrino-based, stand-off methods to improve sensitivity to the existence and operation of nuclear reactors. The main subject of this Lifecycle Plan is to investigate the feasibility, in terms of formulation, characterization, production and deployment, of several kilotons of WbLS in the planned WATCHMAN, the WATer CHerenkov Monitor of AntiNeutrinos, detector at the Boulby Underground Laboratory, U.K. The developing technologies associated with the operation of this LCP could have other implications in nuclear and particle physics, safeguard, and medical physics.
Silicon Alpha Detector for DARPA ICONS neutron generator
Fast-neutron radiography and tomography using Associated Particle Imaging (API) Deuterium-Tritium (D-T) neutron generators are currently under investigation for various end-use applications within the NNSA mission space. Advancements to API D-T neutron generator technology are necessary to realize practical applicability to these end-use applications. These advancements require higher neutron emission rates and improved timing and position resolution from an alpha detector. Users of API D-T neutron generators would benefit directly from the advanced alpha detector potentially realized with this project.
Proliferation Interests Detected using Hidden Network Surveillance
The goal of this project is to use streaming data analysis, built on software defined networks to gather intelligence regarding a nation's nuclear ambitions. Network traffic destined for the largest public repository of nuclear data of cross sections and structure should be monitored silently, efficiently and in real time without running reports on user activity which is outside the scope of the repositories mission. There are several ways to monitor a network, using SDNs, however, offer compute capabilities to perform the needed tasks of directly identifying suspect traffic and can copy, encrypt and package the data for deeper analysis, identifying trends and intent. SDNs are also scalable regarding data flow and compute functions run on commodity hardware providing a robust alternative to intrusion detection or conventional network monitoring. It is interesting to the proliferation community if certain countries inquire about scientific principles supporting proliferation. With SDNs actual computational analysis can occur on the network providing binning, flagging to alert stakeholders with minimal false positives, producing reportable and potentially actionable intelligence.
Nuclear Forensic Science Plan
This project is this lab's activities to develop one or more nuclear forensics science plans, in concert with other lab partners, in preparation for one or more Ventures or Multi-Lab projects in FY 2021.
Internships
BNL's Office of Educational Programs Preparing the next generation of scientists, engineers, technicians, and teachers utilizing the unique scientific tools and intellectual resources of Brookhaven National Laboratory
Programs for every level of education Contact