BNL Home

ATTENTION: Changes due to COVID-19 Site Access Policy  Guidance on Beam Time Allocations

National Synchrotron Light Source II

NSLS-II is a state-of-the-art 3 GeV electron storage ring. The facility offers scientific and industrial researchers an array of beamlines with x-ray, ultraviolet, and infrared light to enable discoveries in clean and affordable energy, high-temperature superconductivity, molecular electronics, and more. Overview »


The next deadline for NSLS-II beam time proposals and beam time requests is September 30, 2020.  |   Submission Details

COVID-19 Research Support

Department of Energy Basic Energy Sciences light sources want to ensure they are doing everything possible to enable research into the COVID-19 virus and the search for an effective vaccine or other treatment. NSLS-II is offering a streamlined and expedited rapid access proposal process for groups that require beam time for structural biology projects directly related to COVID-19. The Center for Biomolecular Structure team is supporting remote macromolecular crystallography experiments at at the AMX and FMX beamlines as well as solution scattering experiments at the LiX beamline.

Submit a proposal for COVID-19 research

See also: DOE structural biology resources with a list of their basic characteristics and points of contact.

Become a Facility User

Beamlines at the National Synchrotron Light Source II are open to academic and industrial users for scientific research. All research proposals are subjected to peer review and ranked against competing proposals based on scientific merit.

NSLS-II Beamlines

NSLS-II’s beamlines and experimental stations offer unique, cutting-edge research tools for a wide variety of scientific areas. All beamlines are organized into five science programs, based on the research capabilities and expertise they offer.

Full Calendar


  1. JUN



    NSLS-II Friday Lunchtime Seminar

    "Correlating microscopic materials properties with superconducting qubit performance"

    Presented by Anjali Premkumar, Department of Electrical Engineering, Princeton University

    12 pm, via Zoom - contact:

    Friday, June 5, 2020, 12:00 pm

    Hosted by: Ignace Jarrige

    In recent years, evidence has emerged that superconducting qubit performance is limited by imperfections in constituent materials. To characterize the microscopic character of these imperfections, we performed measurements of qubit lifetimes in parallel with structural and electron microscopy of the niobium films used in qubit fabrication. Correlations were found between qubit relaxation times and several materials properties, including grain size, oxide composition on the surface and within grain boundaries, and residual resistance. These findings represent a novel approach to understanding sources of qubit decoherence, utilizing techniques such as hard x-ray photoelectron spectroscopy and transmission electron microscopy.

See all

Conferences & Workshops

  1. AUG



    Workshop on Resonant Inelastic and Elastic X-ray Scattering 2021

    August 25-27, 2021


Science ProgramsDetails

Complex Scattering

Hard X-ray Scattering & Spectroscopy

Imaging and Microscopy

Soft X-ray Scattering & Spectroscopy

Structural Biology

User Services Office

Brookhaven National Laboratory
743 Brookhaven Avenue
Building 743
Upton, NY 11973-5000

(631) 344-8737 | | website

Visiting NSLS-II

If you are a contractor or vendor coming to NSLS-II for the day, please work with your host to gain access to the Lab site. If you will be on site for more than one day, please contact the Guest, User, and Visitor Center for access and training requirements. See maps and directions for getting here.