BNL Home

Meetings & Workshops

  1. DEC



    NSLS-II Colloquium Series

    "Superconductivity: Where we are and where we are going"

    Presented by Prof. Robert Cava, Princeton University, NJ

    4 pm, Hamilton Seminar Room, Bldg. 555

    Thursday, December 13, 2018, 4:00 pm

    Hosted by: John Hill

    The discovery of superconductivity, the transmission of electrical current with zero energy loss, recently passed its 100th anniversary. This truly remarkable property of matter, found at cryogenic temperatures, has made its way into a variety of important uses in modern society, but nature has not yet given us the ultimate practical material that will change the world through its lossless transmission of electrical energy over long distances. Research on this complex problem in materials science persists in the world at many levels, and progress is continuously made on both scientific and practical fronts, in spite of the impatience that is often displayed by both the scientific and lay public. In this talk I will briefly describe where we are in this field, and how we got here, and describe the vision that some have had for where we should be going. Because my personal research is in the discovery of new superconducting materials, only one facet among the larger set of fundamental and practical issues currently under study, the talk will be given from that perspective.

  2. DEC



    Physics Colloquium (Leona Woods Distinguished Postdoctoral Lectureship Award)

    "On top of the top: challenging the Standard Model with precise measurements of top quark properties"

    Presented by María Moreno Llácer, CERN

    3:30 pm, Large Seminar Room, Bldg. 510

    Tuesday, December 18, 2018, 3:30 pm

    Hosted by: Andrei Nomerotski

    The understanding of the Electro-Weak Symmetry Breaking mechanism and the origin of the mass of fundamental particles is one of the most important questions in particle physics today. The top quark is unique among the known quarks since it is the heaviest fundamental particle in the Standard Model. Its large mass makes the top quark very different from all other particles, with a Yukawa coupling to the Higgs boson close to unity. For these reasons, the top quark and the Higgs boson play very special roles in the SM and in many extensions thereof. An accurate knowledge of their properties can bring key information on fundamental interactions at the electroweak breaking scale and beyond. The Large Hadron Collider is providing an enormous dataset of proton-proton collisions at the highest energies ever achieved in a laboratory. With the unprecedentedly large sample of top quarks, a new frontier has opened, the flavour physics of the top quark, allowing to study whether the Higgs field is the unique source of the top quark's mass and whether there are unexpected interactions between the top quark and the Higgs boson. The answers to these questions will shed light on what may lie beyond the Standard Model and can even have cosmological implications.

  3. DEC



    Particle Physics Seminar (Leona Woods Distinguished Postdoctoral Lectureship Award)

    "Measurement of top quark pair production in association with a Higgs or gauge boson at the LHC with the ATLAS detector"

    Presented by María Moreno Llácer, CERN

    3 pm, Small Seminar Room, Bldg. 510

    Thursday, December 20, 2018, 3:00 pm

    Hosted by: Alessandro Tricoli

    The top quark is unique among the known quarks since it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. Given its large mass (the heaviest fundamental particle), the top quark may play a special role in the electroweak symmetry breaking mechanism and therefore, new physics related to this might be found first in top quark precision measurements. Possible new physics signals would cause deviations of the top quark couplings from the Standard Model (SM) prediction. It couples to the SM fields through its gauge and Yukawa interactions. The high statistics top quark sample at the LHC has allowed to access the associated production of a top quark pair with a boson: tt+photon, tt+W, tt+Z and tt+H. The latest measurements carried out by the ATLAS detector for these physics processes will be presented, highlighting the main challenges.