BNL Home

Mingzhao Liu

Staff Scientist | Interface Science and Catalysis

Expertise

  • Solar water splitting
  • Pulsed Laser Deposition (PLD)
  • Atomic Layer Deposition (ALD)
  • X-ray fine structure spectroscopy (XAFS)
  • Numerical simulation for nanophotonic/plasmonic structures

CFN Research Activities

Current research focuses on  photoelectrochemical (PEC) water splitting, also known as artificial photosynthesis, through which solar energy is captured and stored in the form of chemical fuel (H2). The goal is to find a photoelectrode material that utilizes solar radiation with high efficiency while enjoying decent chemical stability against the harsh PEC environment, through an integrated approach of material synthesis, photoelectrochemical studies, theoretical modeling, and advanced optical characterizations. A major research emphasis is the combinatorial synthesis of complex semiconductor metal oxide thin films/nanostructures for band gap engineering, using various techniques. The material screening is performed with photoelectrochemistry methods and coupled with ex-situ/in-situ synchrotron X-ray spectroscopy for a comprehensive understanding of the structure-property relationships. Other interests include the experimental/theoretical studies of nanophotonic/plasmonic nanostructures for improving light absorption in solar energy devices and applications in chemical/biochemical sensing.  

Education

  • B.S.: Peking  University (Chemistry), 2002
  • PhD: The University of Chicago, 2007
    • James Franck Institute. Advisor:  Prof. Philippe Guyot-Sionnest
    • Dissertation: Localized Surface Plasmon of Quasi-One-Dimensional Metallic Nanostructures

Professional Appointments

  • Postdoctoral Fellow: Harvard University (2008-2011)
    • Department of Chemistry  and Chemical  Biology. Dr. Hongkun Park group.
    • Projects: Photocatalytic water splitting on cross-linked TiO2 nanowire photoanode; On-chip electro-optical generation of single surface plasmon polariton

Selected Publications & Research Highlights

  • D. H. Yan, M. Topsakal, S. Selcuk, J. L. Lyons, W. R. Zhang, Q. Y. Wu, I. Waluyo, E. Stavitski, K. Attenkofer, S. Yoo, M. S. Hybertsen, D. Y. Lu*, D. J. Stacchiola, and M. Z. Liu*, Ultrathin amorphous titania on nanowires: optimization of conformal growth and elucidation of atomic scale motifs, Nano Lett. 19, 3457–3463 (2019).
  • W. R. Zhang, J. L. Lyons, J. J. Cen, M. Y. Sfeir and M. Z. Liu*, Multicomponent oxynitride thin films: precise growth control and excited state dynamics, Chem. Mater. 31, 3461–3467 (2019).
  • W. R. Zhang* and M. Z. Liu*, Modulating carrier transport via defect engineering in solar water splitting devices, ACS Energy Lett. 4, 834–843 (2019).
  • W. R. Zhang, F. Wu, J. Li, D. H. Yan, J. Tao, Y. Ping, and M. Z. Liu*, Unconventional relation between charge transport and photocurrent via boosting small polaron hopping for photoelectrochemical water splitting, ACS Energy Lett. 3, 2232–2239 (2018).
  • W. R. Zhang, D. H. Yan, X. Tong, and M. Z. Liu*, Ultrathin lutetium oxide film as an epitaxial hole-blocking layer for crystalline bismuth vanadate water splitting photoanodes, Adv. Funct. Mater. 28, 1705512 (2018).
  • D. H. Yan, W. R. Zhang, J. J. Cen, E. Stavitski, J. T. Sadowski, E. Vescovo, A. Walter, K. Attenkofer, Dario J. Stacchiola, and M. Z. Liu*, Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering, Appl. Phys. Lett. 111, 231901 (2017).
  • S. Greil, A. Rahman, M. Z. Liu*, and C. T. Black*, Gas transport selectivity of ultrathin, nanoporous, inorganic membranes made from block copolymer templates, Chem. Mater. 29, 9572–9578 (2017).
  • W. R. Zhang, D. H. Yan, K. Appavoo, J. J. Cen, Q. Y. Wu, A. Orlov, M. Y. Sfeir and M. Z. Liu*, Unravelling Photocarrier Dynamics beyond the Space Charge Region for Photoelectrochemical Water Splitting, Chem. Mater. Chem. Mater. 29, 4036–4043 (2017).
  • M. Z. Liu*, J. L. Lyons, D. H. Yan, and M. S. Hybertsen, Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region, Adv. Funct. Mater. 13, 219 (2016).
  • D. H. Yan, J. Tao, K. Kisslinger, J. J. Cen, Q. Y. Wu, A. Orlov, and M. Z. Liu*, The role of domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis, Nanoscale 7, 18515-18523 (2015).
  • K. Appavoo, M. Z. Liu, C. T. Black, and M. Y. Sfeir, Quantifying bulk and surface recombination processes in nanostructured water-splitting photocatalysts, Nano Lett. 15, 1076−1082 (2015).
  • M. Z. Liu*, J. Tao, C.-Y. Nam, K. Kisslinger, L. H. Zhang, and D. Su, Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature, Nano Lett. 14, 5630–5635 (2014).
  • M. Z. Liu*, C.-Y. Nam, C. T. Black, J. Kamcev, and L. H. Zhang, Enhancing water splitting activity and chemical stability of zinc oxide nanowire photoanodes with ultrathin titania shells, J. Phys. Chem. C 117, 13396-13402 (2013).
  • F. Lu, Y. Tian, M. Z. Liu, D. Su, H. Zhang, A. Govorov, and O. Gang, Discrete nano-cubes as plasmonic reporters of molecular chirality, Nano Lett. 13, 3145-3151 (2013).
  • M. Z. Liu, N. d. L. Snapp, H. Park, Water photolysis with a cross-linked titanium dioxide nanowire anode, Chem. Sci. 2, 80 (2011).  
  • M. Z. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, M. Pelton, Excitation of dark plasmons in metal nanoparticles by a localized emitter, Phys. Rev. Lett. 102, 107401 (2009).
  • M. Pelton, J. E. Sader, J. Burgin, M. Z. Liu, P. Guyot-Sionnest, and D. Gosztola, Damping of acoustic vibrations in gold nanoparticles, Nature Nanotech 4, 492 (2009).
  • M. Z. Liu, M. Pelton, and P. Guyot-Sionnest, Reduced damping of surface plasmons at low temperatures, Phys. Rev. B 79, 035418 (2009).
  • M. Z. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations, Phys. Rev. B 76, 235428 (2007).
  • M. Z. Liu and P. Guyot-Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids, J. Phys. Chem. B 109, 22192 (2005).