BNL Home
October 2019
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1

  1. No events scheduled

2

  1. No events scheduled

3

  1. No events scheduled

4

  1. No events scheduled

5

  1. No events scheduled

6

  1. No events scheduled

7

  1. No events scheduled

8

  1. No events scheduled

9

  1. No events scheduled

10

  1. No events scheduled

11

  1. No events scheduled

12

  1. No events scheduled

13

  1. No events scheduled

14

15

  1. Condensed-Matter Physics & Materials Science Seminar

    11 am, ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Cedomir Petrovic

    Heavy-fermion (HF) metals, i.e., intermetallic compounds of certain lanthanides and actinides, have been subject of intensive investigations over the last few decades. These research activities have furnished important discoveries, such as of unconventional superconductivity (SC) ("beyond BCS") and unconventional quantum criticality ("beyond Landau"). About fifty HF superconductors are currently known, more than half of which exhibiting a quantum critical point (QCP) where antiferromagnetic (AF) order is smoothly suppressed by tuning a non-thermal control parameter like pressure or magnetic field. Two variants of HF AF-QCPs have yet been established, i.e., a conventional ("3D SDW") and an unconventional, partial Mott ("Kondo destroying") QCP [1, 2]. In clean, stoichiometric HF metals, the huge entropy accumulated at such an AF QCP is commonly removed by forming an unconventional superconducting phase. The apparent validity of this 'quantum critical paradigm' will be illustrated in the first part of the talk by addressing exemplary quantum critical materials, i.e., the isostructural compounds YbRh2Si2 and CeCu2Si2. The former system exhibits a partial-Mott QCP as reflected by, e.g., an abrupt jump of the Fermi-surface volume [3- 5] and a violation of the Wiedemann-Franz law [6, 7]. For this compound, no SC had been detected down to 10 mK, the lowest temperature accessible in a commercial 3He-4He dilution refrigerator [8]. However, recent magnetic and specific-heat measurements performed in a nuclear demagnetization cryostat down to about 1 mK revealed HF, i.e., unconventional, SC below Tc = 2 mK [9]. CeCu2Si2, the first HF superconductor [10], exhibits SC at a 3D SDW-QCP and was considered a (one-band) d-wave superconductor until a few years ago, when its specific heat was found to exhibit two-gap behavior and exponential temperature dependence at very low temperatures [11]. Based on atomic substitution [12],

16

  1. No events scheduled

17

  1. No events scheduled

18

  1. No events scheduled

19

  1. No events scheduled

20

  1. No events scheduled

21

  1. No events scheduled

22

  1. No events scheduled

23

  1. No events scheduled

24

  1. OCT

    24

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    1:30 pm, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Thursday, October 24, 2019, 1:30 pm

    Hosted by: Cedomir Petrovic

    The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic CH3NH3(Mn:Pb)I3 material in which the photo-excited electrons rapidly melt the local magnetic order through the Ruderman–Kittel–Kasuya–Yosida interactions without heating up the spin system (1). Similar effect was observed in La1-xSrxMnO3/CH3NH3PbI3 heterostructure in which Tc can be tuned by x (2). The observed optical melting of magnetism could be of practical importance, for example, in a magnetic thin film of a hard drive, where a small magnetic writing field could change the magnetic bit. Our method needs only a low-power visible light source, providing isothermal switching, and a small magnetic guide-field to overcompensate the stray field of neighboring bits. Acknowledgment: The work has been performed in collaboration with B. Náfrádi, E. Horváth, A, Arakcheeva, P. Szirmai, M. Spina, H. Lee, O.V. Yazyev, D. Chernyshov, and many others. The research was partially supported by the ERC Advanced Grant (PICOPROP#670918). Reference : 1. Nafradi et al, Nature Communications, 7, 13406, (2016) 2. Nafradi et al, submitted to PNAS

25

  1. No events scheduled

26

  1. No events scheduled

27

  1. No events scheduled

28

  1. No events scheduled

29

  1. No events scheduled

30

  1. No events scheduled

31

  1. No events scheduled

  1. OCT

    24

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    "Engineering magnetism with light with the novel photovoltaic perovskite CH3NH3PbI3"

    Presented by László Forró, Ecole Polytechnique Fédérale de Lausanne, Switzerland

    1:30 pm, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Thursday, October 24, 2019, 1:30 pm

    Hosted by: Cedomir Petrovic

    The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic CH3NH3(Mn:Pb)I3 material in which the photo-excited electrons rapidly melt the local magnetic order through the Ruderman–Kittel–Kasuya–Yosida interactions without heating up the spin system (1). Similar effect was observed in La1-xSrxMnO3/CH3NH3PbI3 heterostructure in which Tc can be tuned by x (2). The observed optical melting of magnetism could be of practical importance, for example, in a magnetic thin film of a hard drive, where a small magnetic writing field could change the magnetic bit. Our method needs only a low-power visible light source, providing isothermal switching, and a small magnetic guide-field to overcompensate the stray field of neighboring bits. Acknowledgment: The work has been performed in collaboration with B. Náfrádi, E. Horváth, A, Arakcheeva, P. Szirmai, M. Spina, H. Lee, O.V. Yazyev, D. Chernyshov, and many others. The research was partially supported by the ERC Advanced Grant (PICOPROP#670918). Reference : 1. Nafradi et al, Nature Communications, 7, 13406, (2016) 2. Nafradi et al, submitted to PNAS

  2. NOV

    12

    Tuesday

    Condensed-Matter Physics & Materials Science Seminar

    "Topological transition on anisotropic hexagonal lattices and effective phonon model for the Quantum Hall transition"

    Presented by Andreas Sinner, University of Augsburg, Germany

    1 pm, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Tuesday, November 12, 2019, 1:00 pm

    Hosted by: Alexei Tsvelik

    The topology of the band structure, which is determined by the lattice symmetries, has a strong influence on the transport properties. We consider an anisotropic honeycomb lattice and study the effect of a continuously deformed band structure on the conductivity and optical properties. We find a strong suppression of the conductivity in one direction and increment by several orders in another which leand to a considerable change of optical properties. We further study a gap generation in a two-dimensional Dirac fermion system which are coupled to in-plane phonons. At sufficiently strong electron-phonon interaction a gap appears in the spectrum of fermions. The structure of elementary excitations above the gap in the corresponding phase reveals the presence of scale invariant parity breaking terms which resemble Chern-Simons excitations. The Kubo formula remyields quantized Hall plateaux. References: EPL 119, 27001 (2017); PRB 97, 235411 (2018); PRB 93, 125112 (2016); Ann. Phys. 400, 262 (2018); arxiv:1908.00442.

  3. NOV

    13

    Wednesday

    Condensed-Matter Physics & Materials Science Seminar

    "TBA"

    Presented by Prof. Bo Brummerstedt Iversen, Aarhus University, Denmark

    11 am, ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Wednesday, November 13, 2019, 11:00 am

    Hosted by: Emil Bozin

    TBA

  4. JAN

    16

    Thursday

    Condensed-Matter Physics & Materials Science Seminar

    "TBA"

    Presented by Jennifer Cano, SUNY-Stony Brook

    1:30 pm, ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Thursday, January 16, 2020, 1:30 pm

    Hosted by: Mark Dean

    TBA

  1. Condensed-Matter Physics & Materials Science Seminar

    "Heavy-fermion quantum criticality and unconventional superconductivity"

    Presented by Frank Stegllich, Max-Planck-Institute for Chemical Physics & Solids, Germany

    Tuesday, October 15, 2019, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Cedomir Petrovic

    Heavy-fermion (HF) metals, i.e., intermetallic compounds of certain lanthanides and actinides, have been subject of intensive investigations over the last few decades. These research activities have furnished important discoveries, such as of unconventional superconductivity (SC) ("beyond BCS") and unconventional quantum criticality ("beyond Landau"). About fifty HF superconductors are currently known, more than half of which exhibiting a quantum critical point (QCP) where antiferromagnetic (AF) order is smoothly suppressed by tuning a non-thermal control parameter like pressure or magnetic field. Two variants of HF AF-QCPs have yet been established, i.e., a conventional ("3D SDW") and an unconventional, partial Mott ("Kondo destroying") QCP [1, 2]. In clean, stoichiometric HF metals, the huge entropy accumulated at such an AF QCP is commonly removed by forming an unconventional superconducting phase. The apparent validity of this 'quantum critical paradigm' will be illustrated in the first part of the talk by addressing exemplary quantum critical materials, i.e., the isostructural compounds YbRh2Si2 and CeCu2Si2. The former system exhibits a partial-Mott QCP as reflected by, e.g., an abrupt jump of the Fermi-surface volume [3- 5] and a violation of the Wiedemann-Franz law [6, 7]. For this compound, no SC had been detected down to 10 mK, the lowest temperature accessible in a commercial 3He-4He dilution refrigerator [8]. However, recent magnetic and specific-heat measurements performed in a nuclear demagnetization cryostat down to about 1 mK revealed HF, i.e., unconventional, SC below Tc = 2 mK [9]. CeCu2Si2, the first HF superconductor [10], exhibits SC at a 3D SDW-QCP and was considered a (one-band) d-wave superconductor until a few years ago, when its specific heat was found to exhibit two-gap behavior and exponential temperature dependence at very low temperatures [11]. Based on atomic substitution [12],

  2. Condensed-Matter Physics & Materials Science Seminar

    "Nematic superconductivity in twisted bilayer graphene"

    Presented by Laura Classen, University of Minnesota

    Tuesday, September 10, 2019, 1 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    Tunable insulating and superconducting phases have recently been induced in several twisted graphene-based heterostructures. These correlated phases are ascribed to an exceptional band flattening, which comes along with a very large hexagonal moiré pattern in real space. We study this interplay of orders in a phenomenological model for the moiré superlattice with a focus on superconductivity. Motivated by the presence of van-Hove instabilities, we approach the pairing problem as an interaction-induced instability of the Fermi surface in terms of the unbiased functional renormalization group. We find two pairing instabilities with different symmetries being close in energy and show that a similar situation arises in a model specific for twisted bilayer graphene. In view of recent experimental observations that the threefold lattice rotational symmetry is broken in the superconducting state of hole-doped twisted bilayer graphene, we analyze the corresponding Landau-Ginzburg free energy with two superconducting order parameters. The result is, indeed, a mixed ground state that breaks rotation symmetry and leads to nematic superconductivity. Time-reversal symmetry can simultaneously be broken.

  3. Condensed-Matter Physics & Materials Science Seminar

    "Tailoring the twinning of DyBa2Cu3O7-x thin films with atomic-layer-by-layer molecular beam epitaxy"

    Presented by Daniel Putzky, Max Planck Institute for Solid State Research, Germany

    Monday, August 26, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Tony Valla/Ilya Drozdov

    In this talk I will present the work on high-quality, epitaxial DyBa2Cu3O7-x (DBCO) thin films grown by molecular beam epitaxy (MBE). In contrast to the previous DBCO growth by MBE using co-deposition technique, we have employed an atomic-layer-by-layer shuttering sequence with in-situ RHEED feedback. Films grown on LSAT (100), NGO (110) and STO (100) have a sharp superconducting transition above 80 K. Scanning-transition electron microscopy (STEM) shows atomically sharp substrate-film interface and the absence of stacking faults, unlike films previously grown by PLD. In the second part of the talk I will focus on the structural investigation using x-ray diffraction (XRD). In-plane scans at the KARA synchrotron confirm the epitaxial relationship to the substrate. In addition the formation of twin domains with the bulk-like orthorhombic crystal structure were observed. By reducing the film thickness the tetragonal to orthorhombic phase transition can be suppressed while the films still remain superconducting.

  4. Condensed-Matter Physics & Materials Science Seminar

    "The 2-spinon contribution to the longitudinal structure factor in the XXZ model"

    Presented by Isaac Perez Castillo, Institute of Physics, UNAM and London Mathematical Laboratory

    Thursday, August 22, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    In this work we derive exactly the two-spinon contribution to the longitudinal dynamical structure factor of the anisotropic Heisenberg spin-1/2 chain in the gapped regime by using quantum group approach. We will briefly discuss some of the mathematical difficulties when confronting form factor formulas given by quantum group approach and how to overcome these obstacles. We end up by contrasting our results with those coming from perturbation theory, while comparison to DMRG and experiments are currently underway.

  5. Condensed-Matter Physics & Materials Science Seminar

    "Fermi arcs, nodal and antinodal gaps in cuprates : the 'pairon' model to the rescue"

    Presented by William Sacks, Sorbonne University, France

    Friday, July 26, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Ivan Bozovic

    Angle-resolved photoemission, in addition to tunneling, has provided key information on the cuprate pairing on the microscopic scale. In particular, in the underdoped regime, the angular dependence of the gap function Δ(θ) deviates from a pure d-wave form such that the antinodal gap value ΔAN and the nodal gap value ΔN completely diverge. On another front, ARPES has firmly established that the enigmatic Fermi arcs, i.e. normal electron excitations around the nodes, exist even below Tc. In this work, we will interpret these experiments based on the 'pairon' model [1] in which the fundamental object is a hole pair bound by its local antiferromagnetic environment on the scale of the coherence length ξAF. The pairon model agrees quantitatively with both the gap function Δ(θ) and the Fermi arcs seen at finite temperature.

  6. Condensed-Matter Physics & Materials Science Seminar

    "Strange superconductivity near an antiferromagnetic heavy-fermion quantum critical point"

    Presented by Chung-Hou Chung, Department of Electrophysics, National Chiao-Tung University, Taiwan

    Wednesday, July 24, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201

    Hosted by: Alexei Tsvelik

    The heavy fermion systems CeMIn5 with M = Co, Rh, Ir, the "115" family, provide a prototypical example of an exotic "strange superconductivity" where unconventional d-wave Cooper pairs get condensed out of an incoherent strange metal normal state, displaying non-Fermi liquid behavior such as: T-linear-resistivity, T-logarithmic specific heat coefficient and a T-power-law singularity in magnetic susceptibility, near an antiferromagnetic quantum critical point [1]. The microscopic origin of strange superconductivity and its link to antiferromagnetic quantum criticality of the strange metal state are still long-standing open issues. We propose a microscopic mechanism for strange superconductors, based on the coexistence and competition between the Kondo correlation and the quasi-2d short-ranged antiferromagnetic resonating-valence-bond (RVB)spin-liquid near the antiferromagnetic quantum critical point via a large-N (Sp(N)) Kondo-Heisenberg model and renormalization group analysis beyond the mean-field level [2]. In the absence of superconductivity, this effective field theory [3] can describe various aspects of strange metal state observed in Ge-substituted YbRh2Si2 [4] close to the field-tuned Kondo breakdown quantum critical point. The interplay of these two effects between the Kondo and RVB physics provides a qualitative understanding on how superconductivity emerges from the strange metal state and the observed superconducting phase diagrams for CeMIn5 [1,2]. References: [1] C. Petrovic et al. J. Phys. Condens. Matt. 13, L337 (2001); S. Zaum et al. Phys. Rev. Lett. 106, 087003 (2011). [2] Y. Y. Chang, F. Hsu, S. Kirchner, C. Y. Mou, T. K. Lee, and C. H. Chung, Phys. Rev. B 99, 094513 (2019). [3] Y. Y. Chang, S. Paschen, and C. H. Chung, Phys. Rev. B 97, 035156 (2018). [4] J. Custers et al, Nature (London) 424, 524 (2003); J. Custers et al. Phys. Rev. Lett. 104, 186402 (2010).

  7. Condensed-Matter Physics & Materials Science Seminar

    "Electron beam effects on organic ices"

    Presented by Marco Beleggia, Technical University of Denmark, Denmark

    Monday, July 22, 2019, 11 am
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Yimei Zhu

    While beam damage is often considered detrimental to our quantitative imaging capabilities, the energy and charge injected into the sample as a result of inelastic scattering can be exploited beneficially. This is especially true in radiation-chemistry-type experimental setups in the electron microscope where the beam promotes local wanted chemical reactions. We have observed that by exposing to the electron beam a layer of small volatile organic molecules condensed over a cold substrate results in the formation of a solid product. Evidence suggests that the exposure mechanism driving the formation of a solid product is partial dehydrogenation of the molecules, removal of H2, and progressive increase of the average molecular weight. Contrary to focused electron beam induced deposition, that relies on surface absorption followed by aggregation of mobile species, at cryogenic temperature organic ice molecules are largely immobilized, and act as targets for the incoming electrons throughout the entire thickness of the layer. Therefore, the exposure occurs throughout the volume of the frozen precursor, and the features are essentially determined by the electron distribution, with diffusion/transport parameters bearing little or no relevance. Since larger molecules are less volatile, if the molecular weight increases sufficiently, upon raising the temperature the unexposed areas leave the sample, while the exposed molecules assemble into a solid product in the form of hydrogenated amorphous carbon.

  8. Condensed-Matter Physics & Materials Science Seminar

    "Excitonic condensation of strongly correlated electrons"

    Presented by Professor Jan Kunes, Vienna University of Technology, Austria

    Wednesday, June 26, 2019, 2:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: Keith Gilmore

    Spontaneous symmetry breaking is a prominent demonstration of the collective behavior of strongly correlated systems. Besides ordering of charge or of spin dipoles, more exotic types of long-range order are possible, which do not couple to conventional probes and are therefore sometimes called the hidden order. Excitonic magnets, or excitonic condensates, are examples of such systems. I will introduce the concept of excitonic condensate from the strong coupling perspective and discuss the rich variety of excitonic phases arising from the internal (spin, orbital) degrees of freedom of the excitons. I will present some numerical results obtained with dynamical mean-field theory for models as well as for specific materials, which we suspect to be excitonic magnets. The presentation will include the recently obtained results for dynamical susceptibilities in phases with long-range order and some proposals on how to detect excitonic condensates with today's experimental techniques.

  9. Condensed-Matter Physics & Materials Science Seminar

    "Tracking phase textures in complex oxides using coherent x-rays"

    Presented by Xiaoqian Chen, Lawrence Berkeley Laboratory

    Monday, June 17, 2019, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ian Robinson/Mark Dean

    In complex oxides, coupled interactions result in unpredictable and novel emerging orders that are yet to be understood. With the recent advancement in x-ray and laser sources, exploration of equilibrium fluctuation and nonlinear dynamics have become an effective approach to understand these intertwined orders. In particular, coherent x-rays are a simultaneous probe of the order parameter, phase texture, and dynamics. In the first part of my talk, I will use underdoped cuprate La2-xBaxCuO4 as an example to show how x-ray speckle correlation can be a test for (lattice degree of freedom and charge) order coupling and dynamics. However, can we image domain dynamics in real time? In the second part of my talk, I will use antiferromagnetically ordered artificial lattice to demonstrate that phase retrieval lensless imaging can be used to image charge and magnetic orders. Using Bragg coherent diffraction imaging, we revealed a single domain wall motion with 100ms time resolution. References [1] X. M. Chen et al. Phys. Rev. Lett. 117, 167001 (2016) [2] V. Thampy et al. Phys. Rev. B 95, 241111 (2017) [3] X. M. Chen et al. Nat Commun. 10 1435 (2019) [4] X. M. Chen et al. under review, arXiv:1809.05656 [cond-mat.mes-hall]

  10. Condensed-Matter Physics & Materials Science Seminar

    "Probing quantum materials with multiple spectroscopic techniques"

    Presented by Eduardo H. da Silva Neto, University of California, Davis

    Thursday, June 6, 2019, 1:30 pm
    ISB - Bldg. 734

    Hosted by: Robert Konik

    Resonant X-ray Scattering (RXS), Scanning Tunneling Spectroscopy (STS) and Angle-Resolved Photo-Emission Spectroscopy (ARPES) measurements have been at the forefront of several advances in the studies of quantum materials. Our group specializes in these techniques, looking to leverage their combination to the study of quantum materials. I will discuss two projects where we have used these state-of-the-art techniques to study high-temperature superconductors and topological materials. Charge order has now been ubiquitously observed in cuprate high-temperature superconductors. However, it remains unclear if the charge order is purely static or whether it also features dynamic correlations. I will discuss a polarization-resolved soft x-ray inelastic RXS experiment with unprecedented resolution that demonstrates the existence of a coupling between dynamic magnetic and charge-order correlations in the electron-doped cuprate Nd2−xCexCuO4 [1-3]. I will also discuss a combined ARPES-STS study of the topological material Hf2Te2P. Similar to the reports by H. Ji, et al. on Zr2Te2P [4], band structure calculations and ARPES by Hosen et al. [5] also suggest multiple topological surface states in Hf2Te2P. However, some topological surface states still lacked direct spectroscopic evidence due the inability of ARPES experiments to probe the unoccupied band structure. Using the combination of STS and ARPES with surface K-doping, we probe the unoccupied band structure of Hf2Te2P and demonstrate the presence of multiple surface states with a linear Dirac-like dispersion, consistent with the predictions from previously reported band structure calculations [6]. [1] E. H. da Silva Neto, et al. Science 347, 282 (2015). [2] E. H. da Silva Neto, et al. Science Advances 2 (8), e1600782 (2016). [3] E. H. da Silva Neto, et al. Physical Review B, Rapid Communication 98, 161114(R) (2018). [4] H. Ji, et al. Physical

  11. Condensed-Matter Physics & Materials Science Seminar

    "Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory"

    Presented by Xiaozhe Shen, SLAC National Accelerator Laboratory

    Monday, June 3, 2019, 2 pm
    Bldg. 480, Conference Room

    Hosted by: Jing Tao

    Ultrafast electron diffraction (UED) is a transformative tool for probing atomic structural dynamics in ultrafast science to understand the correlation between materials' structure and their functionalities, with the ultimate goal of controlling energy and matter. The advent of high-brightness relativistic electron beams from photocathode radio frequency (RF) gun provides a great opportunity to push the resolving power of UED onto atomic length and time scales. With the expertise in electron beam physics and ultrafast laser technology, SLAC has dedicated enormous efforts to develop a world-leading UED using mega-electron-volt (MeV) electron beams since 2014. Over the years, SLAC MeV UED has achieved great instrument performance and delivered numerous scientific outcomes for ultrafast science. In 2019, SLAC MeV UED has officially transformed into a user facility. In this talk, performance of SLAC MeV UED will be reviewed, including characterization of the instrument resolution and machine stability. The unique capabilities of SLAC MeV UED to accommodate various sample environments for a broad range of scientific interests, including condense matter physics and chemical science, will be presented, with highlighted scientific results. Research and development efforts to improve the performance of SLAC MeV UED will be discussed.

  12. Condensed-Matter Physics & Materials Science Seminar

    "In situ imaging of gold nanocrystals during the CO oxidation reaction studied by Bragg Coherent Diffraction Imaging"

    Presented by Ana Flavia Suzana, Brazilian Association of Synchrotron Light Technology-ABTLUS, Brazil

    Thursday, May 23, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ian Robinson

    The fundamental aim of heterogeneous catalysis research is to understand mechanisms at the nanoparticle level, and then to design and synthesize catalysts with desired active sites. In this regard, the in situ/operando characterization of defects is crucial as they are preferential catalytic sites for the reaction occurrence. In this seminar I will talk about the main part of the work developed during my PhD: the investigation of the morphology and structure evolution of gold nano-catalysts supported on titanium dioxide. Those catalytic materials were evaluated for the model CO oxidation reaction, chosen for its environmental relevance and "simplicity" to be reproducible within our X-ray imaging study. We used the Bragg Coherent Diffraction Imaging technique to follow in situ the 3D morphology changes under catalytic reaction conditions. We correlated the 3D displacement field and strain distribution of the gold nanoparticles to the catalytic properties of the material. In particular, for a 120 nm gold nanoparticle, we quantified under working conditions the adsorbate-induced surface stress on the gold nanocrystal, which leads to restructuration and defects identified as a nanotwin network.

  13. Condensed-Matter Physics & Materials Science Seminar

    ""Superconductivity and magnetism at ferroelectric critical point""

    Presented by Alexander Balatsky, UConn Nordita

    Thursday, April 18, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Ilya Drozdov

    It is well established that multiple entangled orders emerge in quantum materials at criticality: eg superconducting states develop in the vicinity of magnetic phases. I will make the case that similar phenomena occur in quantum paraelectrics. Recent observations of strain and O18 isotope substitution in doped STO support the view of the key role critical ferroelectric fluctuations play in producing superconductivity. Looking beyond superconductivity, I will illustrate how quantum ferroelectric fluctuations can induce magnetic fluctuations due to recently proposed phenomenon of dynamic multiferroicity.

  14. Condensed-Matter Physics & Materials Science Seminar

    "Tailoring electronic and thermal properties of bulk Cu26T2(Ge,Sn)6S32 colusite through defects engineering and functionalization of the conductive network"

    Presented by Emmanuel Guilmeau, CRISMAT Laboratory, Caen, France

    Thursday, April 11, 2019, 1:30 pm
    Bldg. 734, ISB Conference Room 201 (upstairs)

    Hosted by: Qiang Li

    A complete study of the structure and thermoelectric properties of colusite Cu26T2(Ge,Sn)6S32 (T = V, Cr, Mo, W) is presented. A brief introduction provides a state-of-theart/survey of thermoelectric sulfides, with a special focus on the structural features and transport properties relationship in Cu-based sulfides. In the first part of this presentation, we highlight the key role of the densification process on the formation of short-to-medium range structural defects in Cu26V2Sn6S32 [1]. A simple and powerful way to adjust carrier concentration combined with enhanced phonon scattering through point defects and disordered regions is described. By combining experiments with band structure and phonons calculations, we elucidate, for the first time, the underlying mechanisms at the origin of the intrinsically low thermal conductivity in colusite samples as well as the effect of S vacancies and antisite defects on the carrier concentration. In the second part, we demonstrate the spectacular role of the substitution of V5+ by hexavalent T6+ cations (Cr, Mo and W) on the electronic properties, leading to high power factors [2]. In particular, Cu26Cr2Ge6S32 shows a value of 1.53 mW m-1 K-2 at RT that reaches a maximum value of 1.94 mW m-1 K-2 at 700 K. The rationale is based on the concept of conductive "Cu-S" network, which in colusites corresponds to the more symmetric parent sphalerite structure. The interactions within the mixed octahedral-tetrahedral [TS4]Cu6 complexes are shown to be responsible for the outstanding electronic transport properties. [1] C. Bourgès et al., J. Amer. Chem. Soc. 140 (2018) 2186 [2] V. Pavan Kumar et al., Adv. Energy Mater. 9 (2019) 1803249

  15. Condensed-Matter Physics & Materials Science Seminar

    "Importance of electron interactions in understanding the photo-electron spectroscopy and the Weyl character of MoTe2"

    Presented by Niraj Aryal, Florida State University

    Thursday, April 11, 2019, 11 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Weiguo Yin

    Weyl semimetals are crystalline materials that host pairs of chiral Weyl Fermions (WFs) as low energy excitations. Such WFs act as sources and sinks of Berry curvature and can contribute to many exotic transport properties. Recently, inversion symmetry broken transition metal dichalcogenide materials like MoTe2 and WTe2 have been predicted to host type-II WFs by DFT calculations and ARPES experiments. However, quantum oscillation experiments (QOE) disagree with the DFT calculations thus raising doubt about the existence of Weyl physics in these materials [1]. In order to address this discrepancy, we studied the role of electron interactions in Td-MoTe2 by employing DFT where the onsite Coulomb repulsion (Hubbard U) for the Mo 4d states is included within the DFT+U scheme. We found that in addition to explaining the QOE, inclusion of electron interaction is needed to explain the light-polarization dependence measured by ARPES [2]. We also found that while the number of Weyl points (WPs) and their position in the Brillouin Zone change as a function of U, a pair of such WPs very close to the Fermi level survive the inclusion of these important corrections. Our calculations suggest that the Fermi surface of Td-MoTe2 is in the vicinity of a correlations-induced Lifshitz transition which can be probed experimentally. If time allows, I will also present briefly our study of the interface between topological insulator and non-topological materials which are important for band engineering and studying emergent fundamental phenomena. References [1] D. Rhodes, R. Schonemann, N. Aryal, Q.R. Zhou et al., Bulk Fermi surface of the Weyl type-II semimetallic candidate ?-MoTe2, Phys. Rev. B 96, 165134 (2017). [2] N. Aryal and E. Manousakis, Importance of electron correlations in understanding the photo-electron spectroscopy and the Weyl character of MoTe2, Phys. Rev. B 99, 035123 (2019).

  16. Condensed-Matter Physics & Materials Science Seminar

    ""Charge and lattice entanglement in quantum materials observed by TEM: Tb2Cu0.83Pd0.17O4 and Cu2S""

    Presented by Wei Wang, Institute of Physics, Chinese Academy of Sciences, Beijing

    Tuesday, April 9, 2019, 3 pm
    Bldg. 480, Conference Room

    Hosted by: Jing Tao

    Plenty of physical properties in strongly electron correlated system are thought to arise from intricate interplay among charge, spin, orbital and lattice. Understanding the structural origin of these functionalities, such as superconductivity, multiferroics, etc, has attracted tremendous attention for decades. Using electron diffraction technique in TEM, we recently studied the modulated structure in Tb2Cu0.83Pd0.17O4 compound and phase transition in Cu2S. After a brief introduction of TEM techniques that I have employed for the study, I will report observations of electron-beam-induced smectic-nematic phase transitions in Tb2Cu0.83Pd0.17O4. Electron diffraction and HAADF-STEM images indicate a superlattice structure with Cu/Pd displacements perpendicular to the Cu-O plane on Cu sites. In addition, the superlattice modulation undergoes a reversible smectic-nematic phase transition under the electron beam illumination. Our in situ TEM results imply that the modulated structure root in a charge ordering at Cu sites. Then I will switch to an on-going study of the Cu2S at high temperature. Previous reports show that the crystal structural of Cu2S can be manipulated by electron beam illumination, suggesting a strong coupling between charge and lattice. To explore the structural phase transition and to have a better understanding of superionic behavior in this material, we focus on diffuse scattering in the electron diffraction patterns obtained at high temperatures, which results from short range ordering of Cu atoms. Electron diffraction tomographyic data were collected in order to reconstruct the real-space structure for Cu atoms. Preliminary results will be shown followed by a discussion with early-stage interpretations.

  17. Condensed-Matter Physics & Materials Science Seminar

    "Topological semimetals predicted from first-principles and theoretical approaches"

    Presented by Jiawei Ruan, School of Physics, Nanjing University, China

    Monday, April 1, 2019, 11 am
    Building 734, Seminar Room 201

    Hosted by: Weiguo Yin

    Weyl semimetals are new states of matter which feature novel Fermi arcs and exotic transport phenomena. Based on first-principles calculations, we report that the HgTe-class materials [1] as well as four chalcopyrites [2] are ideal Weyl semimetals, having largely separated Weyl points and uncovered Fermi arcs that are amenable to experimental detections. We also construct a minimal effective model to capture the low-energy physics of this class of Weyl semimetals. Our discovery is a major step toward a perfect playground of intriguing Weyl semimetals and potential applications for low-power and high-speed electronics. Besides the ideal Weyl semimetals, I will talk about Non-Hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence [3]. I will also present recent results of saddle surface in topological materials and a new method to construct a simplified tight-binding model based on group theory analysis. [1] JR et al., Nature communications 7, 11136 (2016). [2] JR et al., PRL 116, 226801 (2016). [3] H. Wang, JR, and H. Zhang, PRB 99, 075130 (2019).

  18. Condensed-Matter Physics & Materials Science Seminar

    "Neutron scattering study of strongly correlated systems"

    Presented by Yao Shen, Fudan University, China

    Monday, March 11, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Mark Dean

    In strongly correlated systems, interactions between various microscopic degrees of freedom with similar energy scales can induce strong competition and frustration, leading to exotic phenomena. Here we use neutron scattering technique to study several strongly correlated systems to show how the competition and interplay between these degrees of freedom can induce different phases and properties. 1) In the pressure-induced superconductor CrAs, the competition between various magnetic interactions lead to a noncollinear helimagnetic order. In addition, CrAs exhibits a spin reorientation at a critical pressure (Pc ~ 0.6 GPa), which is accompanied by a lattice anomaly and coincides with the emergence of bulk superconductivity, indicating the strong interplay between magnetic, structural and electronic degrees of freedom. 2) FeSe, the structurally simplest iron-based superconductor, shows nematic order at 90 K, but no magnetic order in the parent phase. Our neutron scattering experiments reveal both stripe and Neel spin fluctuations that are coupled to the nematicity. The competition between these two phases suppress the magnetic order and drive the system into a nematic quantum disordered paramagnet. Similar phenomenon is observed in YFe2Ge2, in which the magnetic order is suppressed by the competition between stripe type AFM phase and in-plane FM phase. 3) In the heavily electron-doped FeSe based superconductor Li0.8Fe0.2ODFeSe (Tc=41 K), a twisted dispersion of spin excitations is observed which may be caused by the competition between itinerant and local electrons, analogous to the hole-doped cuprates which host remarkably high Tc as well. 4) In the two-dimensional triangular lattice antiferromagnet YbMgGaO4, due to the strong spin-orbit coupling and crystalline electric field (CEF), the low-lying crystal field ground state is a Kramers doublet. The geometric frustration is enhanced by the anisotropic interactions and a quantum sp

  19. Condensed-Matter Physics & Materials Science Seminar

    "Unconventional superconductivity and complex tensor order in half-Heusler superconductors"

    Presented by Igor Boettcher, University of Maryland

    Tuesday, February 26, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Laura Classen

    A revolutionary new direction in the field of superconductivity emerged recently with the synthesis of superconductors with strong inherent spin-orbit coupling such as the half-Heusler alloys. Due to band inversion, the low-energy degrees of freedom are electrons at a three-dimensional quadratic band touching point with an effective spin 3/2, which allows for higher-spin Cooper pairing and potentially topological superconductivity. I will illuminate some possibilities for unconventional superconductivity in this system, in particular a novel superconducting quantum critical point and the transition into a phase with complex tensor order, which is a superconducting state captured by a complex second-rank tensor valued order parameter describing Cooper pairs having spin 2. Here the interplay of both tensorial and complex nature results in a rich and intriguing phenomenology. I will highlight how optical response measurements can shed light on the phase structure of individual compounds.

  20. Condensed-Matter Physics & Materials Science Seminar

    ": Electronic structure of d-metal systems as revealed by ab initio modeling of resonant inelastic X-ray scattering"

    Presented by Lei Xu, Leibniz Institute for Solid State and Materials Research Dresden, Germany

    Friday, February 15, 2019, 11 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Weiguo Yin

    I will present our work on the theoretical investigation of the electronic structure, magnetic interactions and resonant inelastic X-ray scattering (RIXS) in 3d or 4d-5d transition metal (TM) compounds by using wave-function-based many-body quantum chemistry (QC) methods. My presentation contains two parts. In the first part, I will discuss the magnetic properties of 4d and 5d TM ions with a formally degenerate t12g electron configuration in the double-perovskite (DP) materials Ba2YMoO6, Ba2LiOsO6 and Ba2NaOsO6. Our analysis indicates that the sizable magnetic moments and g-factors found experimentally are due to both strong TM d – ligand p hybridization and dynamic Jahn-Teller effects. Our results also point out that cation charge imbalance in the DP structure allows a fine tuning of the gap between the t2g and eg levels. In another example of t12g electron configuration, spin-Peierls (SP) TiPO4 compound, we assign excitation peaks of experimental RIXS spectra and find that the d1 ground state is composed of an admixture of dz2 and dxz orbital character. In the second part, I will discuss a computational scheme for computing intensities as measured in X-ray absorption and RIXS experiments. We take into account the readjustment of the charge distribution in the 'vicinity' of an excited electron for the modeling of RIXS. The computed L3-edge RIXS spectra for Cu2+ 3d9 ions in KCuF3 and for Ni2+ 3d8 ions in La2NiO4 reproduce trends found experimentally for the incoming-photon incident-angle and polarization dependence.

  21. Condensed-Matter Physics & Materials Science Seminar

    "Resonant inelastic X-ray scattering (RIXS) as a probe of exciton-phonon coupling"

    Presented by Andrey Geondzhian, European Synchrotron Radiation Facility (ESRF), France (UTC+1)

    Thursday, February 14, 2019, 9:30 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Weiguo Yin

    Phonons contribute to resonant inelastic X-ray scattering (RIXS) as a consequence of the coupling between electronic and lattice degrees of freedom. Unlike other techniques that are sensitive to electron-phonon interactions, RIXS can give access to momentum dependent coupling constants. This Information is highly desirable in the context of understanding anisotropic conventional and unconventional superconductivity. In my talk, I will consider the phonon contribution to RIXS from the theoretical point of view. In contrast to previous studies, we emphasize the role of the core-hole lattice coupling. Our model, with parameters obtained from first principles, shows that even in the case of a deep core-hole, RIXS probes exciton-phonon coupling rather than a direct electron-phonon coupling. Further, to address the needs of predictive approach and overcome limitations of the model studies we developed a Green's function formalism to capture electron-phonon contributions to RIXS and other core-level spectroscopies (X-ray photoemission spectroscopy (XPS), X-ray absorption spectroscopy (XAS)). Our approach is based on the cumulant expansion of the Green's function combined with many-body theory calculated vibrational coupling constants. In the case of the XAS and RIXS, we use a two-particle exciton Green's function, which accounts implicitly for particle-hole interference effects that have previously proved difficult. Finally, to demonstrate the methodology, we successfully applied our formalism to small molecules, for which unambiguous experimental data exist.

  22. Condensed-Matter Physics & Materials Science Seminar

    "Phase transition in functional materials and structural dynamics as studied by UTEM"

    Presented by Ming Zhang, Institute of Physics, Chinese Academy of Sciences

    Tuesday, February 12, 2019, 10 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Jing Tao

    My presentation contains 3 parts. First, I will briefly introduce the pump-probe technique and Ultrafast Transmission Electron Microscopy (UTEM). Then I will demonstrate our development project of the UTEM, including the modifications of the configuration, the establishment of optical system, the generation of photoelectrons, and specific cases are discussed to show the capability of our UTEM. At last, I will highlight the application of UTEM via two examples: (1) The photoinduced martensitic (MT) transition and reverse transition in a shape memory alloy Mn50Ni40Sn10 have been examined by UTEM, and imaging and diffraction observations clearly show a variety of structural dynamic features at picosecond time scales; (2) The Lorentz UTEM for direct imaging photoinduced ultrafast magnetization dynamics, revealing remarkable features of magnetic transient states after a femtosecond pulsed laser excitation, and three successive dynamical processes involving four distinct magnetic states are evidently observed in MnNiGa crystals.

  23. Condensed-Matter Physics & Materials Science Seminar

    "Stimulation of quantum phases by time-dependent perturbations"

    Presented by Victor Galitski, University of Maryland

    Thursday, February 7, 2019, 11 am
    ISB Bldg. 734, Conf. Room 201 (upstairs)

    Hosted by: Mark Dean

    I will review our theory work on dynamic stimulation of various quantum phases. A key idea here is that the equilibrium distribution is rarely optimal for occurrence of a given quantum state and dynamic perturbations can be used to "deform" an electron population in a favorable way in order to enhance quantum coherence. To illustrate this idea, I will show how both Cooper pairing and phase coherence can be dynamically enhanced in both conventional superconductors and bosonic superlfuids. Then, I will discuss dynamic enhancement of high-temperature superconductivity in the cuprates, as it reported in experiments by the Andrea Cavalleri group in Hamburg. It will be shown that an optical pump can suppress charge order and simultaneously enhance superconductivity, due to the inherent competition between the two. In the second part of my talk, I will generalize these ideas to quantum cavities, where the light-matter coupling can be strongly enhanced. In particular, I will discuss the hybridization of cavity photons with collective modes in interacting two-dimensional materials, including the formation of Higgs polaritons and the closest analogue to excitons in a superconductor - Bardasis-Schrieffer modes - hybridized with light.

  24. Condensed-Matter Physics & Materials Science Seminar

    "Novel Electrochemistry for Fuel Cell Reactions: Efficient Synthesis and New Characterization Methods"

    Presented by Zhixiu Liang

    Wednesday, February 6, 2019, 4:30 pm
    Bldg. 480 Conference Room

    Hosted by: Jing Tao

    The ever increasing consumption of fossil fuels for transportation causes climate change causing a growing concern about their future availability and further adverse environmental effects. To address this issue, the concept of CO2 neutral fuels-based energy cycle was brought out. The key reactions in that concept are electrochemical methanol oxidation (MOR), ethanol oxidation reaction (EOR), and CO2 reduction reaction (CO2RR). These all are elctrocatalysis research challenges being slow even at the best catalyst that hamper application of fuel cells, and bring environmental benefits. My research made these improvements of catalysts for the key reactions. In-situ electrochemical infrared reflective absorbance spectrum (EC-IRRAS) reveals that at lower temperature, such reaction is not complete and generates more formate; at elevated temperature, such reaction is complete to carbonate. Ethanol is one of the ideal fuels for fuel cells, but requires highly improved catalysts. Au@PtIr/C catalyst was synthesized with a surfactant-free wet-chemistry approach. Transmission electron microscope (TEM) characterization confirms the monolayer/sub-monolayer Pt-Ir shell, gold core structure. The catalyst has a very high mass activity of 58 A/mg at peak current. In situ EC-IRRAS reveals that C-C bond is cleaved upon contact with the catalyst surface leading to ethanol complete oxidation to CO2. Related researches on methodologies, included in situ TEM to help obtaining catalysts improvements, give morphologic, structural and spectroscopic information at wide range from hundreds of microns to sub-nanometer coupled with various detectors. Microelectromechanical System (MEMS) based chips technology enables TEM observation in operando, with liquid-flow-cell chips and electrochemistry chips designed and fabricated. Ag@Au hollow cubes synthesis via galvanic replacement of Au on Ag cubes was investigated with in situ TEM. The results demonstrate abnormal react

  25. Condensed-Matter Physics & Materials Science Seminar

    "Strongly-correlated systems: Controllable field-theoretical approach"

    Presented by Igor Tupitsyn, University of Massachusetts Amherst

    Tuesday, January 29, 2019, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    Accurate account for interactions in theoretical models for strongly correlated many-body systems is the key for understanding real materials and one of the major technical challenges of modern physics. To accept this challenge, new and more effective methods, capable of dealing with interacting systems/models in an approximation-free manner, are required. One of such methods is the field-theoretical Diagrammatic Monte Carlo technique (DiagMC). While a conventional Quantum Monte Carlo samples the configuration space of a given model Hamiltonian, the DiagMC samples the configuration space of the model-specific Feynman diagrams and obtains final results with controlled accuracy by accounting for all the relevant diagrammatic orders. In contrast to conventional QMC, it does not suffer from the fermionic sign problem and can be applied to any system with arbitrary dispersion relation and shape of the interaction potential (both doped and undoped). In the first part of my talk I will introduce the technique, based on its bold-line (skeleton) implementation, and benchmark it against known results for the problem of semimetal-insulator transition in suspended graphene. In the second part I will briefly demonstrate its applications to various strongly-correlated systems/problems (stability of the 2d Dirac liquid state against strong long-range Coulomb interaction; interacting Chern insulators; phonons in metals; 1d chain of hydrogen atoms; uniform electron gas (jellium model), optical conductivity, etc).

  26. Condensed-Matter Physics & Materials Science Seminar

    "Recent Progress in Non-perturbative methods for QFTs"

    Presented by Lorenzo Vitale, Boston University

    Wednesday, January 23, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    Quantum field theories (QFT) are notoriously hard to solve in the strongly coupled regime, and few tools are available in space dimension larger than one. In this talk I discuss recent progress and ideas in characterizing certain QFTs in dimension d >= 1, based on the Hamiltonian Truncation and S-matrix bootstrap techniques. Some of the applications I will mention are Landau-Ginzburg theories and the Chern-Simons-matter theories.

  27. Condensed-Matter Physics & Materials Science Seminar

    "Effect of ion irradiation on the mechanical behavior and microstructural evolution of nanoscale metallic alloys"

    Presented by Gowtham Sriram Jawaharram, University of Illinois at Urbana - Champaign

    Wednesday, January 16, 2019, 11 am
    ISB Bldg. 734 Conference Room 201 (upstairs)

    Hosted by: Jing Tao

    Nanostructured alloys are considered as potential candidates for next generation (Generation IV) nuclear reactors because the high densities of interfacial defect sinks present in these materials. The effect of irradiation on the mechanical behavior of such alloys has received limited attention, likely resulting from the experimental challenges associated with performing such experiments. The first part of the talk will report on our recent efforts to perform high temperature irradiation induced creep (IIC) measurements in focused ion beam fabricated FCC alloys (single crystalline Ag nanopillars and nanocrystalline high entropy alloys (HEA) microbeams) by combining in-situ TEM based small-scale mechanical testing with ion irradiation and in-situ laser heating using the in-situ ion irradiation transmission electron microscope (I3TEM) at Sandia National Laboratories. The effect of pillar size, grain size, and temperature on the observed creep mechanism will be discussed. The second part of the talk will focus on the microstructural evolution of model highly immiscible CuW alloys during thermal annealing and high temperature irradiation characterized using high angle annular dark field (HAADF) imaging. The results will be discussed from the context of evolution and spatial distribution of W precipitates and its effect on hardness as a function of irradiation dose and temperature.

  28. Condensed-Matter Physics & Materials Science Seminar

    "Exact Solution and Semiclassical Analysis of BCS-BEC Crossover in One Dimension"

    Presented by Tianhao Ren, Columbia University

    Monday, January 7, 2019, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Alexei Tsvelik

    In this talk, I will introduce a new type of model for two-component systems in one dimension subject to exact solutions by Bethe ansatz. It describes the BCS-BEC crossover in one dimension and its integrability is obtained by fine-tuning the model parameters. The new model has rich many-body physics, where the Fermi momentum for the ground state distribution is constrained to be smaller than a certain value and the zero temperature phase diagram with an external field has a critical field strength for polarization. Also the low energy excitation spectra of the new model present robust features that can be related to solitons at BCS-BEC crossover in one dimension, as shown by the semiclassical analysis.

  29. Condensed-Matter Physics & Materials Science Seminar

    "Uncovering the interactions behind quantum phenomena"

    Presented by Keith Taddei, Oak Ridge National Laboratory

    Tuesday, December 18, 2018, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ian Robinson/Mark Dean

    Quantum computing, spintronics and plasmonics are nascent fields with potential to radically change our technological landscape. Fundamental to advancing these technologies is a mastery of quantum materials such as superconductors, quantum-spin-liquids and multiferroics. Ideally, we would know exactly what interactions give rise to these phenomena and design materials suitable for applications however, such an understanding as of yet eludes us. Instead we are stuck digging around in the phase space of known quantum materials slowly uncovering pertinent details to their design, filling in pieces of our incomplete picture. In this presentation, I will discuss recent bits I have found in my use of neutron scattering to study quantum materials. Starting with a novel new family of quasi-one-dimensional (Q1D) superconductors (A1,2TM3As3 with A = alkali metal and TM = Cr, Mo) I will present findings of short-range structural order and a proximate magnetic instability which, due the radically different structure, allow for new insights to the pertinence to such orders to superconductivity. Importantly, in these materials the two orders break different symmetries and so their interactions with the superconducting order can be studied independently. Next, I will discuss an interesting yet neglected family of frustrated magnetic materials – the rare-earth pyrogermanates (REPG). We find the Er2Ge2O7 REPG to exhibit 'local-Ising' type magnetism in direct analogy to the spin-ice pyrochlores suggesting effects of local anisotropies and dipole interactions. Finally, I will present ongoing work investigating spin-driven polarization effects in the magnetically and structurally straightforward multiferroic BiCoO3. These results demonstrate the essential role of neutron and x-ray scattering techniques in studying these complex materials and the fruitful opportunities these systems present to advance our understanding of quantum materials.

  30. Condensed-Matter Physics & Materials Science Seminar

    "Discussion of opportunities related to Quantum Information initiative"

    Presented by Alexei Tsvelik, BNL

    Friday, December 7, 2018, 3 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Alexei Tsvelik will be sharing his thoughts on how we can answer to the DOE initiative on Quantum Information

  31. Condensed-Matter Physics & Materials Science Seminar

    "Laser induces dynamics in complex oxides with visible/NIR and X-ray probe (Note: This will be a skype presentation)"

    Presented by Sergii Parchenko, Swiss Light Source, Paul Scherrer Institute, Switzerland

    Tuesday, December 4, 2018, 11 am
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ian Robinson/Mark Dean

    **********Note: This will be a Skype Presentation************ recent achievements in generation of ultrashort and intense light pulses allow observation of the physical process on the ultrafast regime. exploring fundamental physical processes on the time scales of interactions, responsible for them, is the key for future understanding of the physical principles and implementation then to the technological application. with this talk, i'm going to present the study of laser induced dynamics in complex oxides with focus on several physical objects: magnetic exchange interaction, insulator to metal transition and magneto-electric coupling. it will be discussed how the study of laser induced changes with different probing methods could help to understand the microscopic mechanisms of physical processes on the ultrafast time scale.

  32. Condensed-Matter Physics & Materials Science Seminar

    "First-principles description of correlated materials with strong spin-orbit coupling: the analytic continuation and branching ratio calculation"

    Presented by Jae-Hoon Sim, Department of Physics, KAIST, Korea, Republic of (South)

    Monday, December 3, 2018, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Sangkook Choi

    The DFT+DMFT combined with the continuous-time quantum Monte Carlo (CT-QMC) impurity solver is one of the successful approaches to describe correlated electron materials. However, analytic continuation of the QMC data written in the imaginary frequency to the real axis is a difficult numeric problem mainly due to the ill-conditioned kernel matrix. While the maximum entropy method is one of the most suitable choices to gain information from the noisy input data, its applications to the materials with strong spin-orbit coupling are limited by the non-negative condition of the output spectral function. In the first part of this talk, I will discuss the newly developed methods for analytic continuation problem, the so-called maximum quantum entropy method (MQEM) [1]. It is the extension of the conventional method, introducing quantum relative entropy as a regularization function. The application of the MQEM for a prototype j_eff=1/2 Mott insulator, Sr2IrO4, shows that it provides a reasonable band structure without introducing a material specific base set. I will also introduce the application of machine learning technique to the same problem [2]. In the second part, a simple technique to branching ratio from the first-principles calculation will be discussed [3]. The calculated ?L·S? and branching ratio of the different 5d iridates, namely Sr2IrO4, Sr2MgIrO6, Sr2ScIrO6, and Sr2TiIrO6 are in good agreement with recent experimental data. Its reliability and applicability also be carefully examined in the recent study. [1] J.-H. Sim and M. J. Han, Phys. Rev. B 98, 205102 (2018). [2] H. Yoon, J.-H. Sim, and M. J. Han, Phys. Rev. B (in press). [3] J.-H. Sim, H. Yoon, S. H. Park, and M. J. Han, Phys. Rev. B 94, 115149 (2016).

  33. Condensed-Matter Physics & Materials Science Seminar

    "Localized-to-itinerant crossovers in Kondo materials"

    Presented by Daniel Mazzone, Brookhaven National Laboratory, NSLS-II

    Monday, December 3, 2018, 11 am
    ISB Bldg. Conf. Room 201 (upstairs)

    Hosted by: Ian Robinson/Mark Dean

    While charge carriers in crystalline structures can be located close to the nuclei or establish a delocalized character, they often epitomize strong fluctuations at intermediate regimes where emergent quantum phases show an intricate coupling among various degrees of freedom. Kondo materials are particularly interesting model systems to investigate strongly correlated phenomena, because they often possess small energy scales that are highly susceptible to macroscopic constraints. I will present recent neutron and X-ray scattering results on the series Nd1-xCexCoIn5 and Sm1-xYxS, where the ground state properties were tuned either via chemical substitution or magnetic field. We find that Nd substitution in CeCoIn5 affects the magnetic coupling parameters, triggering a change in the magnetic symmetry that is offset from the emergence of coherent heavy bands and unconventional superconductivity. Intriguingly, another magneto-superconducting phase with altered coupling is observed in Nd0.05Ce0.95CoIn5 at large magnetic fields. Sm1-xYxS features a transition towards an intermediate valence state under yttrium doping. Our results unravel a Kondo-triggered Lifshitz-transition in the mixed-valence state, which dives an unusually strong charge localization at low temperatures.

  34. Condensed-Matter Physics & Materials Science Seminar

    "Dirac fermions and critical phenomena: exponents and emergent symmetries"

    Presented by Michael Scherer, University of Cologne, Germany

    Thursday, November 8, 2018, 1:30 pm
    ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Hosted by: Laura Classen

    Dirac fermions appear as quasi-particle excitations in various condensed-matter systems for example in graphene or as surface states of topological insulators. Close to a quantum phase transition they exhibit a series of exotic properties, e.g., emergent symmetries, fluctuation-induced critical points, the appearance of two length scales and a hierarchy of mass gaps. I discuss mechanisms that are behind these phenomena from a quantum field-theoretical point of view. Further, I present a four-loop renormalization group study for the determination of the Dirac fermions' critical behavior and compare to the predictions of complementary approaches such as quantum Monte Carlo and the conformal bootstrap. Finally, I will also comment on the possibility to test duality conjectures with these calculations.

Currently showing events from the past year. See all past events »